ISP Manual
1994

Lattice
In-System Programmability
Manual

1994

] attice

Copyright © 1994 Lattice Semiconductor Corporation

E2CMOS, GAL, ispGAL, ispLSI, pDS, pLSlI, Silicon Forest and UltraMOS are registered trademarks of Lattice
Semiconductor Corporation. Generic Array Logic, ISP, ispCODE, ispDOWNLOAD, ispGDS, ispSTREAM, Latch-Lock,
Lattice, pDS+ and RFT are trademarks of Lattice Semiconductor Corporation

All brand names or product names mentioned are trademarks or registered trademarks of their respective holders.

Lattice Semiconductor Corporation products are made under one or more of the following U.S. and international patents:
4,761,768 US, 4,766,569 US, 4,833,646 US, 4,852,044 US, 4,855,954 US, 4,879,688 US, 4,887,239 US, 4,896,296 US,
5,130,574 US, 5,138,198 US, 5,162,679 US, 5,191,243 US, 5,204,556 US, 5,231,315 US, 5,231,316 US, 5,237,218 US,
5,245,226 US, 5,251,169 US, 0194091 EP, 0196771B1 EP, 0196771 UK, 0196771 WG.

LATTICE SEMICONDUCTOR CORP.
5555 Northeast Moore Court
Hillsboro, Oregon 97124 U.S.A.

Tel.: (503) 681-0118

FAX: (503) 681-3037

About This Manual

Background

Lattice Semiconductor Corporation, founded in 1983 and based in Hillsboro, Oregon, has
been providing innovative solutions to the manufacturers of high-performance systems for
over a decade. Lattice pioneered nonvolatile, reprogrammable logic with its UltraMOS®
E2CMOS® technology. This technology, combined with the Lattice GAL® architectures, has
established Lattice products as the industry-standard in low-density programmable logic.
Lattice's ispLSI® and pLSI® families of high-density PLDs combine leadership performance
and density with in-system programmability to establish the high-density programmable logic
standard of the 1990s.

What This Manual Contains

This manual provides a comprehensive guide to using Lattice’s In-System Programmable
(ISP™) devices and design tools. Compiled from information gathered from Lattice’s
customers and applications engineers, this manual demonstrates how easy it is to design-
in and go to full production with Lattice ISP silicon and software solutions. This manual not
only describes the theory behind ISP, but also shows the practical, “how-to” implementation
of ISP. By combining this manual with the latest Lattice Data Book and Handbook, the reader
will have a comprehensive reference library to efficiently design and implement ISP solutions.

Additional Information

For information on product availability and pricing, please contact your Lattice Sales
Representative or Distributor. A listing of all Lattice Sales Offices, Sales Representatives,
and Distributors is included at the end of this manual.

For immediate help with technical questions or access to selected applications described
inside, please call:

Applications Hotline
ispGAL®, ispGDS™, and GAL Products: Tel. 1-800-FASTGAL (327-8425)
FAX (503) 681-3037
ispLSI and pLSI Products: Tel. 1-800-LATTICE (528-8423)
FAX (408) 944-8450

Electronic Bulletin Board
ispGAL, ispGDS, and GAL Products: (503) 693-0215
ispLSI and pLSI Products: (408) 980-9814

Table of
Contents

Section 1: ISP Overview

ISP OVEIVIBW ...ttt et e e e e tae e e e eaas e e e eab e e e s e e eneaeessabe s e nneeesaras 1-1

Section 2: The Basics of ISP

ThEe BaSICS Of ISPeveiiiiiieeeeie et e e e e e e e barae e e e asaa e e e e ssananes 2-1
HArAWArE BASICScccuviiiiiii ittt e et e e s sttt e e e e e e sttt e e e e e sainne e e e e ennane e e e e e 2-3
SOWAIE BASICSeiiiiiiiiiiiiie et eeee e e et e e e e e e ar e e e e e e aenarraee e e e rrae e e s rraa e as 2-37

Section 3: ISP Programming Options

User In-System Programming OPONScccoiiiiiiiiiniiiiiie e 3-1
In-System Programming on a PC or Sun Workstationcccoooiiiiiiiininiis 3-3
In-System Programming from an Embedded Processorccccccciviniiiiiiiiiiinnininncns 3-11
ATE Programming Of ISP DEVICEScccciiiiiiiiiiiiiiiiicin e 3-25
Third-Party Programmerscoveviiiiniiiniiesieise st st s 3-47

Section 4: Application Notes and Article Reprints

Selecting the Best Device for In-System Programmability ... 41
In-System Programmable Logic in High Volume Manufacturing.............c.ccooiiiiiis 4-7
ispLSI Configurable Memory Controllerccoiiiiiiiniiii 4-15
Lattice Bulletin Board SYSEMScoruiiiiiiiiieiciie it 4-31

Section 5: General Information

Lattice SalES OFfiCESvvii ittt e et e ettt e st ettt a e tae e 5-1

vi

Section 1: ISP Overview

ISP OVEIVIBW ...ttt ettt ettt ettt e e e e et e e ereeeeteesneenaeeeateeaaeenes 1-1

Section 2: The Basics of ISP

Section 3: ISP Programming Options

Section 4: Application Notes and Article Reprints

Section 5: General Information

Index

ISP Overview

Introduction

ISP™ (In-System Programmability): The ability to recon-
figure the logic and functionality of a device, board, or
complete electronic system before, during, and after its
manufacture and shipment to the end user.

ISP is the new standard in programmable device technol-
ogy. ISP eliminates traditional PLD limitations and delivers
benefits in board and system-level design, manufactur-
ing, and programming. Since ISP hardware is as flexible
and easy to modify as software, design upgrades are
simple. Because ISP devices can be treated like any
other device on the PCB, no special manufacturing flow
is required to program ISP devices; standard 5-volt logic
level programming signals are easily generated by a PC,
Sun Workstation®, ATE (Automatic Test Equipment), or
system embedded microprocessor. In pioneering ISP,
Lattice has developed an integrated solution of silicon,

Figure 1. In-System Programmability:
Time-To-Market Advantage

FL3

Gate Array | b - Lo 1120
Traditional | : :
HDPLD | %
isp HOPLD _ 15
T T a
0 10 20 30 40 120

Average Number of Days to Working Prototype

Source: Independent survey of over 300 PLD users

software and applications know-how that makes ISP a
practical technology.

Q: What’s Driving ISP Momentum?
A: Time-To-Market

The drive for a shorter time-to-market has fueled explosive
growth in the use of PLDs.

Based on user responses, ISP provides an additional 50%
reduction in time-to-market over traditional HDPLDs and a
more than 85% reduction in time-to-market compared to
gate array implementations (Figure 1).

Another indicator of ISP's momentum is the percentage
of designers who say that ISP capability will influence
their selection of an HDPLD (Figure 2). Just four years
ago, when asked, only 8% of system designers said that
ISP would influence their HDPLD decision. Today, that
percentage has leaped to 60%!

Figure 2. In-System Programmability:
An Emerging Standard

Q: Does In-System Programmability Influence
Your Selection of a High-Density PLD?

75% —

Percent
of
Positive
Customer
Responses

50%

25%

8%

0%

1990 1994

Source: Independent survey of over 300 PLD users.

This overview presents the benefits of ISP and summa-
rizes the ISP solutions available from Lattice. The outcome
is convincing—ISP drives dramatic savings in design
cycle time, manufacturing costs, and time-to-market.

ISP Design Benefits

ISP allows design, test, and manufacturing engineers to
reconfigure system features while the devices remain
soldered on the circuit board. This capability revolution-
izes design prototyping, board-level debug, system
manufacturing, and system upgrades.

The Superior Prototyping Solution

During most system design cycles, major board building
blocks such as the microprocessor and RAM are se-
lected first, well before system logic decisions are made.
When using ispLSI devices, the designer can fully popu-
late his prototype board with the major building blocks,
interconnecting all functions with programmable logic
and switch devices. Design changes, whether they re-
quire added or modified logic, can be made in minutes
using Lattice’s pDS or pDS+ software design tools. A 5-
wire download cable from a PC or workstation to the
prototype board downloads the new logic into the

1-1 In-System Programmability Manual

ISP Overview

device(s). This ability to modify system functionality
without changing components or printed circuit board
(PCB) layout is only the first of many advantages af-
forded by Lattice's ISP technology.

Internal Test

Once the ISP logic has been stabilized, the designer may
use the ISP devices to debug other portions of the board.
For example, a circuit board frequently operates in a
system where it is supplied with stimulus from other
boards. The designer can use in-system programmability
to debug system-level operation more quickly by
reconfiguring the ISP devices to force or redirect signals
(e.g. clocks or control signals) into various portions of the
board design. This ability to thoroughly check board
designs saves precious time during system-level debug
and translates directly into a competitive time-to-market
advantage.

Board Reconfiguration and Field Upgrades

ISP devices provide an ideal way to reconfigure boards
and/or upgrade product features in the field. With con-
ventional logic technology, a system installed at a
customer site is very expensive and difficult to upgrade to
the latest hardware revision, to fix hardware bugs, or to
enable hardware options. With ISP devices, however, if
a subsequent reconfiguration, upgrade or repair is re-
quired, a simple upgrade disk can be used, either in the
field or the factory, to reconfigure the logic (e.g. to modify
memory refresh or control logic or to operate with a faster
microprocessor). Updates via modem, serial link, or a
special ISP programming interface are possible depend-
ing on the system environment or needs.

ISP Manufacturing Benefits

ISP is not only revolutionizing the world of logic design
but is also dramatically transforming the world of manu-
facturing. The ISP devices support multi-function
hardware designs that reduce system part count and
cost. ISP also supports reconfigurability for test which
enhances board-level testability and, ultimately, system
reliability. Finally, ISP allows the “standard PLD manu-
facturing flow” to be simplified (Figure 3), reducing cost
and enhancing system quality.

Multi-Function Hardware

ISP can be used to exploit the concept of multi-function
hardware: a single hardware design able to implement a
variety of system-level functions via in-system program-

ming. Multi-function hardware allows manufacturers to

reduce the number of unique board designs used in a
system, further simplifying the manufacturing flow.

Multi-function hardware dramatically lowers system-level
costs by reducing the component count on the boards as
well as reducing the number of different boards required
to implement various system-level options.

A dual-processor board, intended to interface with sev-
eral bus interface standards, illustrates these benefits.
The traditional solution calls for dedicated logic for each
of the bus interface standards, requiring either a unique
board dedicated for each standard or a single board with
additional logic. ISP devices allow the design of a single
generic bus interface, which can be configured in-system
to interface with each of the bus standards, saving
components, and cost.

Reconfigurability for Test

The ISP approach facilitates board-level testing and
increases system fault coverage without sacrificing board
resources or real estate. A diagnostic test pattern can be
temporarily programmed into the ISP devices to exhaus-
tively exercise board-level functions. Additionally, with
ispGDS, programmable signal routing can be exploitedin
the test environment to perform enhanced board-level

Figure 3. ISP Manufacturing Flow vs. Standard
Manufacturing Flow

Standard Flow
Using Non-ISP Devices

DRAW PARTS FROM
STORES (1 P/N)

PROGRAM EACH
PART

Enhanced Flow
Using ISP Devices

DRAW PARTS FROM
STORES (1 P/N)

LABEL EACH
PROGRAMMED PART

RETURN PARTS
TO STORES
(MULTIPLE P/N's)

DRAW PARTS FROM
STORES TO ASSEMBLY

BOARD ASSEMBLY

BOARD ASSEMBLY

BOARD TEST
*Diagnostics using ISP
*Final Programming
*Final Board Test
*Boundary Scan

h

BOARD TEST

1-2

In-System Programmability Manual

ISP Overview

test. For example, certain ispLSI devices may be config-
ured by the tester to force test sequences into other
portions of the board logic. The tester then monitors the
response of this action and determines if the board
passes or fails. This ability to detect board-level failures
early in the manufacturing cycle reduces overall system
cost. Once these detailed diagnostics are complete, the
ISP devices can be reprogrammed to their normal logic
configurations for final functional testing.

Boundary Scan

Complementing the ISP approach to board-level testing,
IEEE Standard 1149.1 Boundary Scan technology (avail-
able with the 3000 series) enhances overall system
quality. As component densities on the system boards
increase, along with greater chip density and I/O, the
ability to access and test critical nodes is impaired. With
Boundary Scan Test, a serial interface through the test
access port (TAP) simplifies field diagnostics and testing
while costs are reduced. And because the same Bound-
ary Scan serial path and control pins are used for
implementing ISP programming, overall manufacturing
costs are reduced as well.

Simplified Manufacturing Flow /
No Bent Leads

At present, there are no automatic handlers capable of
handling the programming of high lead-count, high-den-
sity Quad Flat Pack PLDs. As a result, all non-ISP high
lead-count devices must be programmed by hand using
a standard logic programmer.

It is a difficult task to insert a high lead-count, small lead-
pitch device into a programming socket adapter, program,
label (or mark) and reinventory the device without bend-
ing the delicate package leads. These bent leads can
result in poor coplanarity and bad solder connections,
increasing the amount of board and system-level trouble-
shooting required.

With the ISP devices, the parts go directly from the
receiving dock to the manufacturing floor for placement
on the PCB, entirely eliminating the stand-alone pro-
gramming and mark operations and avoiding bent leads
associated with misalignment of the device in the pro-
grammer socket. Unprogrammed ISP devices can be
loaded into auto-insertion equipment and then placed
directly onto the PCB without sockets or regard for the
specific logic configurations. Individual device configura-
tions can be downloaded from Automatic Test Equipment,
PC, or workstation platforms atfinal board test. Program-
ming of high-density PLDs containing thousands of gates
takes only seconds.

System Upgrades and Repair

Lasting benefits from the use of ISP can be realized even
after systems are shipped. In-system reprogramming
can reduce field maintenance costs through enhanced
field diagnostic capability, less costly product feature
upgrades, and simpler maintenance procedures. Train-
ing, documentation, and on-going support can also be
simplified by using the ISP approach to build in maintain-
ability.

ISP Applications

Lattice's breadth of ISP device options, together with
their leading-edge performance and features, have re-
sulted in the design-in of ISP devices into a wide range of
electronic systems. These applications include:

Multimedia Video Editing

Electronic Test Equipment

Network Routers and Bridges
Cellular Telephone Base Stations
Telephone Switching Systems
Hardware Accelerators

Memory Subsystems

Multi-Standard Video Frame Grabber
Data Acquisition

Image Processing

Why have designers embraced the ISP concept? For
many, the manufacturing cost benefits, faster logic de-
sign and prototyping, and ability to reliably program
high-pin count devices have been the most obvious
benefits of employing ISP. However, in addition, ISP's
ability to reconfigure systems immediately prior to and
after shipment has begun to open up new possibilities.

For example, a very common but practical application for
ISP comes from a company manufacturing traffic signal
controllers. These controllers support priority “green lights"
for emergency vehicles and buses through strobe light
sensors that detect coded strobe sequences from the
vehicles. The authorized sequences vary from city to
city. ISP allows the sequence detector to be repro-
grammed easily at the time the signal controller is shipped
to a particular area or after it is installed. The alternative
of custom-coded, traditional PLDs would result in signifi-
cant additional effort and expense to customize the
hardware of each system.

1-3 In-System Programmability Manual

ISP Overview

E2CMOS Technology

Lattice was the pioneer in electrically erasable CMOS
(E2CMOS) technology with the invention of the GAL
device. With over 200 million devices shipped to custom-
ers, Lattice has the most CMOS PLD manufacturing
experience in the industry. Merging E2CMOS technology
with ISP, Lattice conceived the in-system programmable,
electrically erasable CMOS process. All ispLSI, ispGAL,
and ispGDS devices are manufactured using Lattice’s
proprietary high-speed UltraMOS E2CMOS technology.
Lattice is unique among “fab-less” companies in that it
performs its own process technology development.
UltraMOS technology successfully combines the best
features of CMOS and NMOS process technology to
yield PLDs with the following key features:

Industry Leading Performance

High Logic Densities

Low Power Consumption

Fast Erase and Reprogram Times (Seconds)
100% Full Parametric Testability

100% Programming and Functional Yields

Lattice’s experience in E2CMOS manufacturing allows it
to specify the best ISP parameters in the industry, includ-
ing ISP programming over the full Commercial
temperature range (0° to 70° C), a minimum of 1000
program / erase cycles for ispLSI devices (10,000 for
ispGAL and ispGDS devices), and 20 year guaranteed
program retention.

Table 1. ISP Solutions from Lattice

Unlike SRAM-based programmable devices, the non-
volatility of E2CMOS means there is never a need to
reprogram ISP devices after a power-down and power-
up sequence. In addition, there is no need for a separate
memory component to store the logic program. A “secu-
rity cell” feature is also available, allowing the device to be
programmed, verified, and then secured. After the device
has been secured, the binary pattern cannot be read from
the device. However, even a secured device can be
identified via the User Electronic Signature (UES). This
field is reserved for the user to record product data such
as code revisions and device functions.

ISP Solutions from Lattice

Lattice offers five families of In-System Programmable
devices (Table 1).

The ispLSI® Families of High-Density
Programmable Logic from Lattice

The ispLSI families merge ISP technology with Lattice’s
high-performance, high-density pLSI® (programmable
Large Scale Integration) architecture. The ispLSI de-
vices are the first in-system programmable logic devices
to combine the performance and ease of use of PLDs
with the density and flexibility of FPGAs. Their powerful
architecture can implement a wide range of logic func-
tions includingregisters, counters, multiplexers, decoders,
and complex state machines. With 135MHz system speed
and logic densities ranging from 1,000 to 14,000 gates,
they’re the most powerful programmable logic compo-
nents available today.

&R
o %
The Premier World's First In-System
High-Density PLD In-System Programmable
1K, 2K, and 3K Families | Programmable 22V10 Switch Matrix
Density (PLD Gates) 1-14K Gates 500 Gates 7x7-11x11 Matrix
Speed: fmax (MHz) 135 111 50
Speed: tpd (ns) 7.5 7.5 7.5
Macrocells 32-320 10 N/A
Registers 32-480 10 N/A
Inputs + 1/Os 34-160 22 14-22
Packages 44-, 68-, 84-Pin PLCC 28-Pin PLCC 20-, 28-Pin PLCC
44-,100-, 176-Pin TQFP 20-, 24-, 28-Pin PDIP
120-, 128-Pin PQFP
160-, 208-Pin MQUAD
167-, 207-Pin CPGA

In-System Programmability Manual

ISP Overview

The ispGAL® Family of Low-Density
Programmable Logic from Lattice

The ispGAL family brings ISP technology to Lattice’s
industry standard GAL® (Generic Array Logic) family of
Low-Density PLDs. The ispGAL22V10 combines the full
functionality of the popular GAL22V10 architecture to-
gether with ISP technology, while maintaining the
GAL22V10 standard 28-pin PLCC package and foot-
print.

At 7.5ns Tpd and 111MHz system speed, the
ispGAL22V10 is ideally suited for high-speed, small- to
medium-scale logic functions typically found at the heart
of today's microprocessor based systems.

The ispGDS™ Family of Programmable Digital
Switches from Lattice

The ispGDS (in-system programmable Generic Digital
Switch) family represents the expansion of ISP technol-
ogy beyond system logic to system interconnect. This
merger of ISP and a switch matrix architecture provides
the ability to quickly implement and change p.c. board
connections without changing mechanical switches or
other system hardware. These high-performance, low-

Figure 4. ISP Design and Impiementation Flow

power, programmable digital switch devices are offered
in a variety of matrix sizes and packages adding system
flexibility to users.

The ispGDS family is an ideal solution for easy, end-
system feature configuration. Withits 7.5ns performance,
the ispGDS family also supports high-performance sig-
nal routing applications. The result is system hardware
that can be reconfigured under software control without
manual intervention.

ISP Implementation
ISP Interface

Programming and reprogramming ISP devices is simple
and straightforward (Figure 4), requiring only a 5-volt
power supply and a simple 4- or 5-wire serial interface
depending on which ISP device is used. In-system pro-
gramming operations such as PROGRAM, VERIFY, and
ERASE are performed by passingcommands and datato
the ISP devices over the serial in-system programming
interface (Figure 5). The basic programming signals
consist of Serial Data In (SDI), MODE select (MODE),
Serial Data Out (SDO) and Serial Clock (SCLK). In
addition, ispEN is used to enable or disable the other four
programming control signals on ispLSI devices, allowing
these four pins to also function as dedicated inputs during
normai operation.

Logic Design Tools

i
|
i Design .
| Entry | .PWWO"E Y tools
| | for design entry.
[
1
I R I
1
1
! I
| -)
|
|
! |
[] I
| Fitting |
|
|
! I
ol oo
_ [!
I |, Programming P.C. Board
| Tools | ispLSI ispGAL
_ v | (Nainiainls) * ISP devices car med
.| ISP Daisy Chain | P(sDI SDO Dl SDO) ina dai dni::rei: ;ngm
l' Download d mlle:sg’onﬁguraﬁon
JEDEC 1 | (Windows/DOSUNIX) | . P '
File ‘ ‘ PGS
'l ispcODE || 00 s01j¢
| (C Source Code) | —

— o e e e e = — = J
T « Once a JEDEC file is created, Lattice's Programming Tools allow you to program ISP devices

on a PC, Sun Workstation, Embedded Processor, or with ATE.

1-5

In-System Programmability Manual

ISP Overview

Device Programming Configurations

Single or multiple In-System Programmable (ISP) de-
vices can be programmed in several configurations.
Each ISP device can be programmedindividually, through
an independent ISP interface, or multiple devices can
share a parallel muitiplexed or serial daisy chained inter-
face. The serial daisy chain configuration, shown in
Figure 5, is the most efficient and easiest to implement,
as it utilizes a simple hardware interface and program-
ming procedures.

Multiple Programming Platforms

Lattice’s ISP devices can be easily programmed on a
wide variety of platforms:

PC and Workstation

Today, every engineer has a PC or workstation. With ISP,
they save time and money by designing and prototyping
logic on a single platform. Designers can enter and
simulate designs using popular third-party CAE tools,
automatically place-and-route the logic using Lattice’s
pDS or pDS+ tools, and then download the programming
files to ISP devices without leaving their seat. With ISP,
device programming is easy; Lattice’s ispDOWNLOAD
cable connects to the PC parallel port, or to the
workstation’s serial port (via the isp Engineering Kit
Model 200), to give quick, easy and inexpensive pro-
gramming of one or more ISP devices.

ATE

Lattice’s ISP devices can also be programmed at final
boardtestonan ATE, completely eliminating the need for
a third-party device programmer for production. This
streamlines the manufacturing flow and allows program-

Figure 5. In-System Programming Interface

mable devices for the first time to be treated like any other
components on the board. To make the task easy,
Lattice’s ispCODE and tester programming utilities can
be used to generate programming test vectors, or pro-
gramming routines based on ispCODE can be written in
the tester’s high-level language.

Embedded Processor

System Designers who want to be able to modify product
features or upgrade their system hardware after the
product has shipped to their customers will be interested
in in-system programming using their product's own
embedded processor. The product’s embedded proces-
sor can be used to directly supply the ISP programming
signals through a simple 4- or 5-bit port. Logic fuse maps
and code can be stored in EPROM or other available
system memory element. If the system has a modem or
network link, remote download of new configurations
from a central point is even possible. As result, systems
no longer become obsolete as soon as they leave the
factory, but can adapt and change to meet customers’
growing needs for years to come.

Third-Party Programmer

Finally, ISP devices can be programmed by a number of
popular third-party programmers. If a user already owns
a third-party device programmer and is interested in the
long-term benefits of ISP (like future field upgradability),
but isn’t ready to make the change yet, they can still
program ISP devices like any other PLD on their device
programmer. If they do need to change the device pro-
gramming pattern at some future date, ISP will certainly
make the process a lot easier: no device desoldering, no
board swapping, no wasted effort.

SDO
SDI 5-wire ISP
MODE Programming
SCLK Interface
iSpEN
ispGAL ispGDS
22V10 22

02948

In-System Programmability Manual

Verification

ISP Overview

ISP Development Tools

Design Entry and Fitter Software

To provide design support for in-system programmable
devices, compiler support for ispGDS and ispGAL de-
vices is available from numerous third-party compilers.
ABEL, CUPL, LOG/iC, MINC, ORCAD PLD and others
produce JEDEC files for these devices. Lattice also
provides a compiler for the ispGDS family.

ispLSIdesigns can be quickly implemented using Lattice’s
low-cost pDS® development system or pDS+™ Fitter
software that interfaces with third-party development
software packages such as ABEL, Viewlogic, LOG/iC,
Cadence, Synopsys, Mentor Graphics, Synario, and
ORCAD (Figure 6), and produces standard JEDEC pro-
gramming files.

ispStarter™ Kits

Lattice has also introduced products called ispStarter
Kits that contain all the software, download cables,
samples, and data sheets needed to implement ISP for
the firsttime. These ispStarterKits, available in pDS-and
ABEL-compatible versions, allow system designers to try
out ISP for themselves at a price of only $99.

Programming Tools

Once the JEDEC file has been generated for a given
design, the design information must be programmed into

Figure 6. Development Tools Available from Lattice

"Design Idea |

the proper device. Lattice supports programming the ISP
devices on a PC, workstation, embedded processor,
ATE or third-party programmer with several program-
ming tools.

ispCODE

Lattice provides a library of programming routines written
in ANSI-standard C++language (calledispCODE™) which
can be easily incorporated into a system or tester soft-
ware to support programming of the ISP devices. These
routines include such common operations as Program,
Read, Verify, Erase, and Secure. After completion of the
logic design and creation of a JEDEC file, in-system
programming can be accomplished on customer-specific
hardware: UNIX systems, PCs, testers, or embedded
systems. The ispCODE software package supplies spe-
cific routines, with extensively commented source code,
for incorporation into application programs. These rou-
tines provide flexible, easy-to-use program modules which
support the programming of a single device or multiple
devices on a board. Example programs are included to
demonstrate the use of each routine. One of these
programs, when compiled, produces a Windows applica-
tion called ISP Serial Programmer, which not only
programs, reads, and verifies ISP devices using the
parallel port of a PC, but also supports ATE program-
ming.

ISP Daisy Chain Download Software
Lattice also provides ISP Daisy Chain Download soft-
ware, a Windows-based executable utility which supports

Third-Party
Environments
v y y
Design Mentor Data /O Data /O ISDATA
Entry Cadence Graphics Synopsys Viewlogic ABEL Synario LOGAC ORCAD
pDS+ pDS+ pDS+ pDS+ pDS+ pDS+ pDS+ pDS+
Cadence Mentor Synopsys Viewlogic ABEL Synario LOGAC ORCAD
Device Logic Partitioning
Fitting Auto Place & Route Lattice Fitter Lattice Fitter Lattice Fitter Lattice Fitter Lattice Fitter Lattice Fitter Lattice Fitter Lattice Fitter

ol

I) I ; }

Design

Viewlogic ‘

Viewlogic Simulation or Cadence Verilog-XL or Synario Sim or Mentor Quicksim Il

Functional and Timing Simulation |

In-System Programmability Manual

ISP Overview

programming of all Lattice ISP devices in a serial daisy
chain configuration in a PC environment.

isp Engineering Kits and Download Cable

Lattice’s isp Engineering Kits for ispLSI devices function
as device programmers in conjunction with a PC or
workstation. Or, they can be used for direct download to
an ispLSI device on your board. The isp Engineering Kits
interface with either a PC or workstation and consist of a
programming module, download cables and socketadapt-
ers which are used to program any of the Lattice ispLSI
devices. The ispDOWNLOAD™ cable supports pro-
gramming of any ISP device directly on the PCB.

Future of ISP

In-system programmability is the logical evolution of
programmable device technology. PLDs have evolved
from the fuse-based, one-time programmable devices
invented in the 70's, to the electrically erasable compo-
nents of the 80's, and now the in-system programmable
devices of the 90's. The time and expense benefits of
employing ISP make its widespread use inevitable.

But what about the future applications that ISP opens up?

To begin with, system designers will need to adopt a new
mindset to exploit hardware that can evolve after the
product is shipped. No longer will a hardware design be
"frozen" as it is today; features will change based on
updates transmitted from a central site or the system
microprocessor can reconfigure peripheral functions in
response to application needs. The use of ISP will drive
hardware designs to more generic configurations thatare
given their "personality" through in-system program-
mable logic and interconnect components. Entire boards
will be able to reconfigure microprocessor, memory and
peripheral functions for any application. Justas a PC can
run CAE tools, financial spreadsheets, games and mul-
timedia software depending on the need, ISP hardware
will be able to solve a broad range of problems just by
downloading a new personality.

Ultimately, ISP will make the term "hardware" an anach-
ronism, and usher in the era of truly programmable
systems.

Programmable Technology Evolution

ULSI
Systems [~

R
Subsystems

Integration
Level
LsI

Logic Blocks | g o Fuse PALs

One-Time
Programmable,
SSI/MSI
Gates/Flip-Flops

CMOS Low-Density PLDs
Electrically
Erasable

Programmable System Hardware
Self-Configuring Systems

CMOS High-Density PLDs
In-System
Programmable

Y

1970's

1980'

s 1990's 2000's

Time

In-System Programmability Manual

Section 1: ISP Overview

Section 2: The Basics of ISP

THE BASICS O ISP ...t ettt 2-1
HAPAWATE BASICSoviceiieiiiecicie ettt et et ettt et eee e ee e e saeseeeeeaene 2-3
SORWAIE BASICSeoiiiiiiiieiiite et ettt et ettt ee ettt eae e 2-37

Section 3: ISP Programming Options

Section 4: Application Notes and Article Reprints

Section 5: General Information

Index

The Basics of ISP

Introduction

This section describes the details of programming with
Lattice's In-System Programmable (ISP™) devices. It is
organized into three sections. The first section summa-
rizes the ISP design flow. The next section describes ISP
hardware interface basics, including discussions on both
key issues required to get started with ISP quickly, as well
as detailed ISP information for those interested in a
thorough understanding of ISP at the device level. The
final section focuses on ISP software, which summarizes
all the development tools available to support easy
implementation of the Lattice ISP solutions.

ISP Design Flow

As with other Programmable Logic Devices (PLDs), the
ISP design flow includes design entry using CAD soft-
ware, compiling and fitting the design, generating a
JEDEC standard fuse map file, and programming the
device (Figure 1).

Creating a JEDEC Fuse map File

As part of any PLD design flow, the logic design must be
entered through any combination of VHDL, schematic,
Boolean equation, state machine, or truth table design
entry. Lattice has various third-party and proprietary
software packages which support these design method-
ologies. Each of these design packages will take a design
and generate a standard JEDEC fuse map for program-
ming. Up to this point in the logic design process, ISP
devices share the same design flow as standard pro-
grammable logic devices.

Programming

Programming consists of converting the JEDEC fuse
map file into a serial data format and shifting that serial
data into the device. The ISP programming software
automatically converts the JEDEC fuse map file into the
serial data format which is programmed into the ISP
device. However, a JEDEC file is made up of ASCII
characters which use a relatively large amount of space,
especially in environments in which storage space for the
fuse map information is limited. In order to support these
storage-critical environments, Lattice has defined an
ispSTREAM™ data format which represents each fuse
location with a single bit instead of an ASCI| character.
The ISP programming software also accepts this
ispSTREAM format for programming.

Figure 1. ISP Design Flow

Design Entry

y

Compilation and
Device Fitting

y

JEDEC Fusemap File

h 4

Programming

Once the fuse map is ready, it is just a matter of serially
shifting the data into the device along with the appropri-
ate addresses and commands. The basic ISP interface
uses four wires to shift the JEDEC fuse map data into the
device. An additional fifth wire is used by ispLSI devices,
employing an active low ISP Enable (ispEN) signal as a
mode control to put the device into programming or
normal operation mode.

The MODE signal, along with SDI, controls the ISP
device's internal state machine to step through the ISP
programming process. The entire ISP programming pro-
cess is controlled by a three-state state machine. The
three states are Idle State, Shift State, and Execute
State. Transitions between these states are controlled by
the MODE and SDI inputs along with SCLK for synchro-
nization. ISP commands such as Program, Bulk Erase,
Verify, Data Shift, and Address Shift are executed through
the device's instruction registers and ISP interface input
pins.

In-System Programmability Manual

The Basics of ISP

Traditionally, programmable logic devices have been
programmed on PLD/PROM programmers which require
that all programming signals and algorithms be gener-
ated by the programmer. The programmer also generates
the external super voltage or high voltage required by
non-ISP devices (typically 12-14 volts). This super volt-
age requirement is one of the main reasons dedicated
programmers are used to program conventional PLDs.

However, with ISP devices, the ISP programming super
voltage is generated within the device from the 5-volt
power supply. This internal super voltage generation
teamed with Lattice’s unique serial ISP programming
interface enables designers to program any ISP device
using a simple four- or five-wire interface in which all the
programming signals are driven by standard TTL logic
levels (5 volts).

The details of device programming are transparent to the
user if ISP programming software such as ISP Daisy
Chain Download and ispCODE™ C++ Source Code are
used. These software tools drive the four or five ISP
programming signals in accordance with the program-
ming specifications and the state machine requirements.
The ISP Daisy Chain Download software generates the
ISP signals with proper timing through the use of the PC

parallel port. ispCODE can be ported to any hardware
platform required and can be used to generate ISP
programming signals using whatever hardware is avail-
able.

Lattice also supports the use of other programming
interfaces such as Automatic Test Equipment (ATE).
Specifically for testers, Lattice provides JEDEC file con-
version routines to tester-acceptable formats. In addition,
testers which accept high-level languages can be pro-
grammed using ispCODE C++ routines as a model for
structuring test programs.

These and other topics are covered in the next two
sections, "Hardware Basics" and "Software Basics."

2-2

In-System Programmability Manual

Hardware Basics

Introduction

This section describes programming Lattice ISP devices
from a hardware point of view. It is divided into two
subsections. The first subsection “Getting Started Fast”
is intended to give the reader enough ISP hardware
information to easily implement Lattice’s ISP solutions
using the Lattice ISP tools. The second subsection “ISP
Expert” gives more details on low-level, device-specific
programming algorithms. Since these algorithms are
transparently handled by Lattice’s programming tools,
the second subsection is intended for those readers who
want a thorough understanding of the programming
procedures, which would be required for any custom
implementation of ISP.

Subsection | “Getting Started Fast” Page
ISP Interface 2-3
ISP State Machine Operation 2-4
ISP Device Programming Configurations 2-5
Hardware Considerations 2-7
Hardware Programming Tools 2-9
Programming Times 2-10
User Electronic Signature (UES) 2-11
Subsection Il “ISP Expert” Page
ispLSI Programming Details 2-12
Boundary Scan (ispLSI 3000 Family) 2-19
ispGDS Programming Details 2-23
ispGAL Programming Details 2-32
ISP Daisy Chain Details 2-34

Figure 1. Multiple ISP Device Programming Interface

SDO
SDI 5-wire ISP
MODE Programming
SCLK Interface

ispEN

In-System Programming (ISP) Interface

Programming Lattice’s ispLSI, ispGAL, and ispGDS de-
vices is based on a simple serial ISP programming
interface (Figure 1). The basic elements of the ISP
programming interface are the mode control (MODE),
serial datain (SDI), serial data out (SDO), and serial clock
(SCLK) inputs, as well as a three-state programming
control state machine integrated into each ISP device.
Lattice’s ISP devices utilize nonvolatile E2CMOS tech-
nology and require only five-volt, TTL-level programming
signals from the ISP interface for in-system program-
ming. The internal three-state state machine, which
determines whether the device is in the normal operation
state or in the programming states, is controlled by the
four ISP programming pins. MODE and SDI furnish
control inputs to the state machine, SDI and SDO make
up the programming data inputs and outputs to and from
an internal shift register, and SCLK provides the clock.
ispLS| devices use a fifth programming pin, ispEN, to
multiplex the functions of the SDI, SDO, SCLK, and
MODE pins between ISP functions during programming
and user-defined logic functions during normal PLD
operation.

The internal state machine controls the sequence of
programming operations such as identifying the ISP
device, shifting in the appropriate data and commands,
controlling the internal programming pulse widths to
ensure proper programming voltage margins, and eras-
ing the device. Programming consists of shifting the logic
implementation stored in a JEDEC file into the device
serially through the SDI pin along with the appropriate
address and commands, programming the data into the
E2CMOS logic elements, and shifting the data from the
logic array out through the SDO pin for verification.

A

2-3

In-System Programmability Manual

Hardware Basics

ISP Programming Pins

The programming pins used to program Lattice devices
are each described in detail in this section. Figure 2
shows the ispLSI 1032 84-Pin PLCC device pinout.

The Serial Data In (SD!) pin performs two different
functions. First, it acts as the data input to the serial shift
register built inside each ISP device. Second, it functions
as one of the two control pins for the programming state
machine. Because of this dual role, the function of SDI is
controlled by the MODE pin. When MODE is low, SDI
becomes the serial input to the shift register, and when
MODE is high, SDI becomes a control signal for the
programming state machine. Internally, the SDI signal is
multiplexed to various shift registers in the device. The
different shift instructions of the state machine determine
which of these shift registers receives input from SDI.

The MODE signal, combined with the SDI signal, controls
the programming state machine, as described in the "ISP
State Machine Operation" section which follows.

The Serial Clock (SCLK) pin provides the serial shift
register with a clock. SCLK is used to clock the internal
serial shift registers and clock the ISP state machine
between states. State changes and shifting data in are
performed on low-to-high transitions. When MODE is
high, SCLK controls the programming state machine,
and when MODE is low, SCLK acts as a shift register
clock to shift data in or out or to start an operation. When
shifting data out, the data is available and valid on SDO
only after a subsequent high-to-low transition of SCLK.

The Serial Data Out (SDO) pin is connected to the output
of the internal serial shift registers. As previously stated,
the selection of which shift register to output is deter-
mined by the ISP state machine’s shift instruction. When
MODE is driven high, SDO connects directly to SDI,
bypassing the device’s shift registers.

Figure 3. Programming State Machine

Load Shift

ID ID

HL

Idle State
(Normal
Operation)

Note:
Control signals: MODE, SDI

Commands)

Figure 2. ispLSI 1032 84-Pin PLCC Pinout Diagram
BRIB3583%,0,5983299598
9922292222252202802¢2¢0¢9°
alalelalalalalaialalialclalalizlialali=lalata]

11109 8 7 6 5 4 3 2 1848368281807978777675

vos7 12 741 110 38
1o ss 13 730 vo a7
vose Qus 723 v0 %
vo 6o [1s 71[] 1038
voet 16 70[] 11034
voe2 17 69[J 11033
o063 18 681 1032
IN7 19 671 IN4

vo Q20 667 Y1
vee Qa1 ispLSI 1032 65 vee
GND 22 64 [] GND
“ispENNC []23 s3] v2
RESET [J2¢ 621 Y3

*souN o 25 61 [IN/SCLK"
1100 [Oe6 607 031
o1 Qa7 59 [V0 30
102 (28 se[J V029
103 Oa9 s7[] 1028
o4 O3 561 V027
vos Qa1 551 10 26
106 32 s4[J V025
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

The ispEN pin, only utilized on the ispLSI devices, deter-
mines which mode the device is in, namely Edit Mode
(ISP programming mode) or Normal Mode (normal de-
vice operation mode). When ispEN is driven low on an
ispLSI device, the device I/O pins are put into a high
impedance state (by internal active pull-up resistors
equivalent to 100KQ) and the device enters Edit Mode.

ISP State Machine Operation

The programming state machine controls which mode
the device is in, and provides the means to read and write
data to the device (Figure 3). Four ISP programming pins
are used to load and unload data, and to control the state
machine. The three states defined in the state machine
diagram are the IDLE State, SHIFT State,and EXECUTE
State. Instruction codes, which are shifted into the device
in the SHIFT state, control which instruction is to be

Load
Command

Execute
Command

LX

Execute State
(Execute
Command)

In-System Programmability Manual

Hardware Basics

executed in the EXECUTE state. In the SHIFT and
EXECUTE states, all the I/O pins are 3-stated. To transi-
tion between states, MODE is held high, SDI is set to the
appropriate level, and SCLK s clocked. TheispGAL22V10
andispGDS devices, unlike ispLSI devices which employ
an ispEN input pin, rely on the state machine to put the
device I/O pins in a highimpedance state. The IDLE state
puts the ispGAL and ispGDS devices into Normal Mode,
and the remaining two states put the devices into ISP
programming mode, which places the device 1/O pins in
the high impedance state.

Idle/ID State

The Idle/ID state is the first state activated when the
device enters the Edit Mode (ISP programming mode).
The state machine is in the Idle/ID state when the device
is idle, in the Edit Mode, or when the user needs to read
the device identification (each ISP device type is as-
signed a unique identification code. See the "ISP Expert"
section). The eight-bit device identification is loaded into
the shift register by driving MODE high, SDI low, and
clocking the ISP state machine with SCLK. Once the ID
is loaded, it is read out serially by driving MODE low.
Notice that when the device ID is read serially, SDI can
either be high or low (called "don’t care") and the state
machine needs only seven clocks to read out eight bits of
device ID. The default state for the control signals is
MODE high and SDI low. State transition to the Com-
mand Shift State occurs when both MODE and SDI are
high while the ISP state machine gets a clock transition.
As with most shift registers, the Least Significant Bit
(LSB) of the ID gets shifted out from SDO first.

Command Shift State

This state is strictly used for shifting instructions into the
state machine. The entire instruction sets for the ispLSl,
ispGDS, and ispGAL devices are listed in the "ISP
Expert" section. When MODE is low and SDI is "don't
care" in the Command Shift State, SCLK shifts the
instruction into the state machine. Once the instruction is
shifted into the state machine, the state machine must
transition to the Execute State to execute the instruction.
Driving both MODE and SDI high and applying the clock
transfers the state machine from the Command Shift
State to the Execute State. If needed, the state machine
can move from the Command Shift State to the Idle/ID
State by driving MODE high and SDI low.

Execute State

Inthe Execute State, the state machine executes instruc-
tions that are loaded into the device in the Command Shift
State. For some instructions, the state machine requires
more than one clock to execute the command. An ex-
ample of this multiple clock requirement is the address or
data shift instruction. The number of clock pulses re-
quired for these instructions depends on the device shift
register sizes. When executing instructions such as Pro-
gram, Verify, or Bulk Erase, the necessary timing
requirements must be followed to make sure that the
commands are executed properly. For specific timing
information refer to the appropriate data sheets.

To execute a command, MODE is driven low and SDl is
“don’t care.” For multiple clock instructions, the control
signals must remain in the same state throughout the
duration of the execution. MODE high and SDI high will
take the state machine back to the Command Shift State
and MODE high and SDI low will take the state machine
to the Idle/ID State.

ISP Device Programming Configurations

Serial Daisy Chain

Advantages

One of the main advantages of daisy chained ISP pro-
gramming is the simplified hardware interface. The number
of ISP devices that can be connected to the same serial
interface is limited only by the signal drive capability of the
ISP programming control logic. One serial daisy chain is
capable of providing the necessary programming inter-
face, minimizing the hardware overhead for in-system
programming. Software controls generated from PCs,
microcontrollers, and test equipment can program and
reconfigure ISP devices during various board-level de-
sign, test, and manufacturing stages.

Programming Configuration

As shown previously in Figure 1, all the MODE, SCLK,
and I1spEN (if using ispLSI devices) pins of the ISP
devices are connected to the ISP interface, and the first
device’s SDO is connected to the second device’s SDI,
and each following SDO to the SDI of the next ISP device.
This configuration allows a large string of ISP devices to
be programmed, in-system, in a serial daisy chain.

2-5 In-System Programmability Manual

Hardware Basics

Parallel

For low-density ISP devices daisy chain programming is
the most common configuration, but for high-density
devices, with multiplexed programming and logic pins
and the ispEN feature, other programming configura-
tions are also common. ISP devices can be programmed
in one of two parallel configurations. The first parallel
configuration, called Dedicated ISP Pins, dedicates all
ISP programming pins to programming. The second
parallel configuration, called Parallel Multiplex below, is
mainly used for ispLS! devices. In this configuration, the
functions of the ISP programming pins can be multi-
plexed between acting as programming pins and acting
as inputs for normal logic functions.

Dedicated ISP Pins

Figure 4 illustrates one configuration for programming
multiple ISP devices, where the ISP programming pins
(MODE, SDI, SDO, and SCLK) are dedicated to pro-
gramming functions. Although this scheme precludes the
use of the ISP programming control signal pins as sepa-
rate dedicated inputs for system logic functions on ispLS|
devices, it is the easiest to implement. Each of the four
programming control signal pins in each ISP device is
connected (i.e. SDI of the ispLSI 1032 is connected to
SDI ofthe ispLSI 1048 and SD! of the ispLSI 1016; MODE
of the ispLSI 1032 is connected to MODE of the ispLSlI
1048 and MODE of the ispLSI 1016; etc.). With this
scheme, the iSpEN signal for each ispLSI device is
enabled (ispEN low) separately, and one device is placed
in Edit (ISP programming) Mode at a time. With one

Figure 4. Dedicated ISP Pins Configuration

device in Edit Mode, the other devices will be in Normal
Mode and can continue to perform normal system logic
functions. iSpEN is the only programming interface signal
that cannot be used for general logic functions.

Parallel Multiplex

Figure 5 illustrates a multiplexing scheme which allows
the user to control the ISP programming through multiple
independent iSpEN signals for the ispLSI devices. The
multiple iSpEN signals not only control the ispEN inputs
of the ispL S| devices, but also act as the control signals
for multiplexing the functional and ISP programming
signals. This scheme differs from the previous one in that
the ISP programming signals are not dedicated to pro-
gramming. Instead, the ISP programming signals MODE,
SDI and SCLK function as inputs for both normal func-
tional mode and the ISP programming mode. SDO,
however, functions as an input in normal functional mode
and as an outputin ISP programming mode. Figure 5 also
shows the difference in controlling these different pro-
gramming signals. Please note that when multiplexing
the programming interface signals, the input driving the
SDO pin must be 3-stated during programming to avoid
signal contention. As previously stated, the ISP program-
ming pins on the ispGAL and ispGDS devices are
dedicated to ISP programming, so this configuration is
not utilized often forthe ispGAL and ispGDS devices. The
concept can be modified to multiplex the MODE pin
instead of the ispEN pin and becomes useful in some
ispGAL and ispGDS applications.

ispLSI

1048

1

[><—— Serial Data In

Serial Data Out

4 ISP-Mode
ISP-Clock
ISP-Enable »
(I
5-Pin ISP Interface
2-6 In-System Programmability Manual

Hardware Basics

Figure 5. Parallel Multiplex Configuration

System Slystetm
Input npu
Signals | ! Signals

SDO MODE SDI
ispLSI

SCLK

MODE SDI SDO

ispLSI

SCLK

ISPEN

spEN

ispENO
ispEN1
MODE

Hardware Considerations

Lattice's In-System Programming (ISP) technology makes
the use of Programmable Logic incredibly simple. Using
ISP, multiple devices can be programmed using a single
serial daisy chain programming loop. However, as with
any high performance semiconductor component, sys-
tems must be designed to insure good signal integrity
without signal conflicts between components. By doing
so, reliable operation can be obtained over a wide range
of operating conditions. This section discusses some
basic programming hardware issues which should be
considered when implementing a system using Lattice
ISP.

All ISP programming specifications such as the program-
ming cycle and data retention are guaranteed when
programming ISP devices over the commercial tempera-
ture range (0 to 70° C). It is critical that the programming
and bulk erase pulse width specifications are met by the
programming platform to insure proper in-system pro-
gramming. Lattice's ISP Daisy Chain Download and
ispCODE software insures that these specifications are
met when using a PC programming platform.

SDI
SCLK

SDO =—

When using the ispDOWNLOAD cable in a daisy chained
configuration, Lattice recommends using a maximum of
eight ISP devices in a single chain. This is to insure
proper programming signal integrity (pulse width, shape,
etc.) at the ISP devices. The eight devices can be any
combination of ispLSI, ispGAL, and ispGDS devices
arranged in any order. The recommended number of
devices is based on a typical system board environment
with proper signal terminations and typical trace lengths.
The actual number of devices that can be programmed in
a serial chain may vary according to the system board
environment. When using more than eight devices, addi-
tional buffering of the ISP programming signals is
recommended. Alternatively, muitiple programming loops
can be employed which are electrically isolated from one
another.

I/0 pins on ISP devices may be defined as inputs once
the devices are programmed. As a result, they typically
will be driven by the outputs of other components once
mounted on the board. Care must be taken to ensure that
I/O pins are not enabled prematurely during program-
ming. To do so when the device is partially programmed
can cause contention with other signal drivers since /O
pins destined to be configured as inputs may not be 3-
stated yet. This conflict can cause improper device
programming and potential damage (Figure 6).

2-7

In-System Programmability Manual

Hardware Basics

Figure 6. ISP Serial Daisy Chain

Serial Data Path

SDO
ispGAL ispGAL ispGAL
Device Device Device
Signals from SRl 5p)) soi soo sol DO
P Gontroler —1OD MODE MODE MODE
Input |~ Input — Input [~
(System P) SCLK SCLK Input |— —— SCLK Input |— — SCLK Input |-
= Input /0 +— — Input 10— — Input /0 +—
— Input /0 — — Input 110 — Input 1o r—
—{ Input 10 — Input 10 |~ — Input 10 = Other
— Input 10 I~ — Input 110 |~ — Input 110 — Component
—{ Input 110 — — Input /0o — Input 110 — (Memory,
—~— Input o — Input 10— — Input 170 — MPU, etc.)
— Input 110 t+— —{ Input 1o — — Input 110 —
=1 Input 10 — — Input 10— — Input 10 —
— Input /0 — — Input 110 — —{ Input /0 u—‘—‘ Output
~ Input 10 —!{ Input 110 — Input 110
"
/0 Programmed

as an Input

Parallel Control Path

All ISP devices are shipped from Lattice with a fuse
pattern that will put all I/O pins in the high impedance
state prior to programming. The output 3-state is con-
trolled by the ispEN signal on the ispLS| devices. For the
ispGAL and ispGDS devices, the output 3-state is con-
trolled by the programming state machine (Shift and
Execute states 3-state the devices). When implementing
custom ISP programming code, it is important for the
ispGAL and ispGDS that the ISP state machine be kept
within the Shift and Execute states until the completion of
programming. This procedure keeps the partially pro-
grammed device or devices from conflicting with other
components on the board.

ISP programming signal default states must be main-
tained during normal device operation. The ispEN pin on
the ispLSI devices has an internal pull-up to place the
devices in normal functional mode when the pin is not
driven externally. TheispGAL and ispGDS devices' MODE
or SDI signals must be tied low through a 1.2KQ pull-
down resistor during normal functional mode (on-chip
pull-downs are not provided). It is not acceptable to let
these pins float during normal operation. In addition, it is
recommended that the ispDOWNLOAD cable have its
ispEN signal tied to a decoupling capacitor (.01uF) to
ground on the system board.

2-8

In-System Programmability Manual

Hardware Basics

Hardware Programming Tools

isp Engineering Kits

Lattice provides both a PC-based (Model 100) and a Sun
Workstation-based (Model 200) isp Engineering Kit. The
isp Engineering Kits function as stand-alone device pro-
grammers for prototyping.

isp Engineering Kit Model 100

The isp Engineering Kit Model 100 provides designers
with a quick and inexpensive means of evaluating and
prototyping new designs using Lattice ispLSI devices.
This kit is designed for engineering purposes only and is
not intended for production use. The kit programs de-
vices from the parallel printer port of a host PC using the
Lattice pDS or pDS+ PC-based designs tools. By con-
necting a system cable (included) from the host PC to the
isp Engineering Kit, or connecting from the host PC to the
target device on the system board, a JEDEC file can be
easily downloaded into the ispLSI device(s) (Figure 7).

Figure 7. ispEngineering Kit Model 100

isp Engineering Kit Model 200

Theisp Engineering Kit Model 200 provides a prototyping
solution for UNIX systems. This easy-to-use, inexpen-
sive kit is designed for evaluating and prototyping new
designs using Lattice ispLSI and pLSI devices. It is
intended for engineering purposes only and is not in-
tended for production use. The kit programs devices from
the RS-232 serial port of a host workstation using the
pDS+ workstation-based design tools by connecting a
system download cable (included) from the host worksta-
tion to the isp Engineering Kit.

ispDOWNLOAD Cable

The ispDOWNLOAD Cable product is designed to facili-
tate in-system programming of all Lattice ISP devices on
a printed circuit board directly from the parallel port of a
PC. After completion of the logic design and creation of
a JEDEC file by a logic compiler such as the pDS, pDS+
Fitter or ispGDS Compiler software, Lattice’s ISP Daisy
Chain Download Software programs devices on the end-
product p.c. board by generating programming signals
directly from the parallel port of a PC which then pass
through the ispDOWNLOAD Cabile to the device. With
this cable and a connector onthe p.c. board, no additional
components are required to program a device (Figure 8).

Vee Front View
Socket Adapter SDO AMP Connector
Programming Module * Semple Device . Sol
: + Power Supply Converter (9VDC) ispEN il o
3 : « 25-pin Parallel Port Adapter plug Ot
gé : * 6' Universal Programming Module Cable M::E T
c * 6' System Downioad Cable with M
E.E - Modular AMP Connector scik (m| Note: :‘P:;"“ m::::;mnded
on parallel port RJ-45 connector eight positions

behind security :
key :

e ==

Power Supply Converter
110VACAVDC @200 mA

Positive or Negative +/-

Universal Programming
Module

Base Unit

In-System Programmability Manual

Hardware Basics

Figure 8. ispDOWNLOAD Cable

DB25 Parallel Port

Connector Pins isp Interface

D16 Pin 10 SDOUT

D00 Pin2

DO Ping — }— Port Sense
DI5 Pin12

D3 Pin 15 - Vcc Sense
GND Pin20- GND

ispStarter Kits

The ispStarter Kits are designed to make Lattice’s inno-
vative in-system programmable device technology
available in a single, complete package. The isp Starter
Kits contain all the software, hardware, device samples,
and information you need to begin designing with Lattice’s
ISP products.

The ispStarter Kits include pDS Starter or pDS+ ABEL
logic development software for ispLSI 1016 and ispLSlI
2032 devices, ispGDS compiler software, ispCODE, isp
Daisy Chain Download Software, an ispLSI 2032-80LJ,
an ispGAL22V10B-15LJ, an ispGDS14-7J, and an
ispDOWNLOAD Cable.

Table 1. Programming Times of ISP Devices

87654321

1-SCLK
2-GND
'3-MODE
{© '4-=NO CONNECT
i1 5-ispEN
' 6-SDI
1 7-8DO
8-Vee

Note: The pin numbers in Figure 8 are for reference
only. Do not use pin numbers as the socket pinout for
board layout.

Programming Times

The ISP programming times can be approximated by the
number of rows that are required to program on a given
device and the programming pulse width. Assuming that
the overhead of shifting data and other miscellaneous
functions are an order of magnitude smaller in time
duration and therefore negligible, the total programming
time ranges can be calculated as shown in Table 1.

Device Total Programming Time in Seconds
(40ms Programming Pulse)

ispGDS <1

ispGAL22V10 1.84

ispLSI 1016 7.68

ispLSI 1024 8.16

ispLSI 1032 8.64

ispLSI 1048 9.60

ispLSI 1048C 124]

ispLSI 2032 8.16

ispLSI 3256 14.4

2-10

In-System Programmability Manual

Hardware Basics

User Electronic Signature (UES)

The Lattice ispGAL, ispGDS, and ispLSI families can
ease problems associated with document control and
device traceability, thanks to a feature called the User
Electronic Signature (UES).

The UES is basically a user's “notepad” provided in
electrically erasable (E2) cells on each ispGAL, ispGDS,
and ispLSI device. The UES consists of an extra row that
is appended to the programmable array and allocated for
data storage. The physical size of the UES varies by
device type. Table 2 indicates the various sizes of the
UES.

Inthe course of system development and production, the
proliferation of PLD architectures and patterns can be
significant. To further complicate the record-keeping
process, design changes often occur, especially in the
early stages of product development. The task of main-
taining which pattern goes into what device for which
socket becomes exceedingly difficult. What's more, once
a manufacturing flow has been set, it becomes important
to “label” each PLD with pertinent manufacturing infor-
mation, which is beneficial in the event of a customer
problem or return.

Table 2. UES Sizes

[ISP Device UES Size (bits)
ispGAL 22V10 64
ispGDS 32

| ispLSI 1016 80
ispLSI 1024 120
ispLSI 1032 160
ispLSI 1048 240
ispLS| 1048C 240
ispLSI 2032 40
ispLSI 3256 338

Lattice incorporated the UES to store such design and
manufacturing data as the manufacturer's ID, program-
ming date, programmer make, pattern code, checksum,
PCB location, revision number, and/or product flow. This
assists users with the complex chore of record mainte-
nance and product flow control. In practice, the UES can
be used for any of a number of ID functions.

Within the various bits available for UES data storage,
users may find it helpful to define specific fields to make
better use of the available storage. A field may use only
one bit (or all bits), and can store a wide variety of
information. The possibilities for these fields are endiess,
and their definition is completely up to the user.

Even with the device’s security feature enabled, the UES
can still be read. With a pattern code stored in the UES,
the user can always identify which pattern has been used
in a given device. As a second safety feature, when a
device is erased and re-patterned, the UES row is auto-
matically erased. This prevents any situation in which an
old UES might be associated with a new pattern.

It is the user’s responsibility to update the UES when
reprogramming. It should be noted that UES information
will be included in the checksum reading. Therefore,
when the UES is modified the checksum will also change.

The UES may be accessed (read or write) through one of
three methods. First, most third-party programmers sup-
port the UES option through the programmer’s user
interface, so programming or verifying the UES is as
simple as programming or verifying any other array.
Second, the UES may be embedded within the JEDEC
file by selecting the proper fuse locations in the fuse map.
Third, the UES can be written or read using Lattice’s
ispCODE software with routines provided in the ispCODE
library. Further information on using ispCODE software
to program the UES can be found in the Lattice Data
Book.

2-11

In-System Programmability Manual

Hardware Basics

ispLSI Programming Details

The following sections describe the programmable state
machine instruction set, timing parameters, device lay-
out, and programming algorithms as they apply to ispLSI
devices in general. Table 3 lists the eight-bit device ID’s
for all the ispLSI devices.

Table 4 lists the instructions that can be loaded into the
state machine in the Command Shift State and then
executed in the Execute State. Notice that the device
identification is read during the Idle/ID State, and this
operation does not require an instruction.

While it is possible to erase the individual arrays of the
device, it is recommended that the entire device be
erased (UBE) and programmed in one operation. This
Bulk Erase operation should precede every program-
ming cycle as an initialization.

Table 3. ispLSI Device ID Codes

When a device is secured by programming the security
cell (PRGMSC), the on-chip verify and load circuitry is
disabled. The device should be secured as the last
procedure, after all the device verifications have been
completed. The only way to erase the security cell is to
perform a bulk erase (UBE) on the device.

Timing

When programming ispLSI devices, there are several
critical timing parameters that must be met to ensure
proper programming. The two most critical parameters
are the programming pulse width (twp) and the bulk
erase pulse width (tpew). These pulse widths determine
the programming and erasing times of the E2 cells. Figure

9 shows these critical program and erase timing specifi-
cations.

Device MSB LSB
ispLSI 1016 00000001
ispLSI 1024 00000010
ispLSI 1032 00000011
ispLSI 1048 00000100
ispLSI 1048C 00000101
ispLSI 2032 00010101
ispLSI 3256 00100010

In addition to the two programming and erasing specifications, the following timing specifications must be met.

ter from the ISP mode after ispEN becomes inactive.
tsu
(if applicable).
th
tak - Minimum clock pulse width, low.

tekh - Minimum clock pulse width, high.

. Specifies the time it takes to get into the ISP mode after ispEN is activated. Or, the time it takes to come out

- Setup time of the control signals before SCLK. Or, the set up time of input signals against other control signals

- Hold time of the control signal after SCLK. It also applies to the same input signals from the set up time.

towv - Verify orread pulse width. The minimum time requirement from the rising clock edge of a verify/load instruction
execution to the next rising clock edge (Figure 9).

trst
the device.

. Power on reset timing requirement. t,5; must elapse after power up before any operations are performed on

All the programming timing parameters are summarized in the timing diagram (Figures 9 and 10).

2-12

In-System Programmability Manual

Hardware Basics

Figure 9. ispLSI Program, Verify & Bulk Erase Timing

| Execute State (Program, Verify or Buik Erase instruction)

MODE

SDI

SCLK

_
‘<~ tpwp, tbew, or tpwv
&—— th / ¥
<+ tolkn —»] tsu "1

L*— telki

Figure 10. ispLSI Programming Timing Requirements

vCcC

Unused
Input

Unused
Output

ispEN

MODE

SDI

SCLK

SDO

—4 trst |o—

AN
2, KZZ
L =2 KZZ
— tispen
N
!sur—’ th
th _/_:_Q tispdis [
Valid X
—| tekh |<— tsu th
Vin tsuf——{th yoy : too Jo—
/\'l /"4 ~<v L 77 > vaiid X__
It oL orere

Z 2 Z Don't Care
& Transitional State

2-13 In-System Programmability Manual

Hardware Basics

Table 4. ispLSI Programming State Machine Instruction Set

Instruction
00000
00001

00010
00011
00100
00101
00110

00111

01000

01001

01010

01011

01100

01101

01110

10010

10011

Operation
NOP
ADDSHFT

DATASHFT
UBE
GRPBE
GLBBE
ARCHBE

PRGMH

PRGML

PRGMSC
VER/LDH

VER/LDL

GLBPRLD

IOPRLD

FLOWTHRU

VE/LDH

VE/LDL

Description
No operation performed.

Address Register Shift: Shifts address into the address shift register from SDIN.

Data Register Shift: Shifts data into or out of the data serial shift register.
User Bulk Erase: Erase the entire device.

Global Routing Pool Bulk Erase: Bulk erases the GRP array only.
Generic Logic Block Bulk Erase: Bulk erases the GLB array only.

Architecture Bulk Erase: Bulk erases the architecture array and /O configuration
only.

Program High Order Bits: The data in the Data shift register is programmed into the
addressed row’s high order bits.

Program Low Order Bits: The data in the Data shift register is programmed into the
addressed row’s low order bits.

Program Security Cell: Programs the security cell of the device.

Verify/Load High Order Bits: Load the data from the selected row’s high order bits
into the Data shift register for verification.

Verify/Load Low Order Bits: Load the data from the selected row’s low order bits
into the Data shift register for verification.

Generic Logic Block Preload: Preloads the registers in the GLB with the data
from SDIN. All registers in the GLB form a serial shift register.
Refer to device layout section for details.

1/0 Preload: Preloads the I/O registers with the data from SDIN. All registers in the
I/0 cell form a serial shift register (the same order as GLB registers).

Flow Through: Bypasses all the internal shift registers and SDOUT becomes the
same as SDIN.

Verify Erase/Load High Order Bits: Load the data from the selected row’s high order
bits into the Data shift register for erased verification.

Verify Erase/Load Low Order Bits: Load the data from the selected row’s
low order bits into the Data shift register for erased verification.

2-14 In-System Programmability Manual

Hardware Basics

Device Layout

To translate the JEDEC format programming file into the
serial data stream format for programming ispLSI de-
vices, it is necessary to know the physical device layout
and programming architecture. Two main factors deter-
mine how the translation must be implemented: the
length of the address shift register and the length of the
data shift register. The length of the address shift register
indicates how many rows of data are to be programmed
into the device. The length of the Data shift register
indicates how many bits are to be programmed in each
row. Both registers operate on a First In First Out (FIFO)
basis, where the Least Significant Bit (LSB) of the data or
address is shifted in first and the Most Significant Bit
(MSB) of the data or address is shifted in last. For the
Data shift register, the low order bits and the high order
bits are separately shifted in.

Each ispLSI device has a predefined number of address
rows and data bits needed to access its E2CMOS cells
during programming. The data bits span the columns of
the E2 array. From this information, the number of pro-
gramming cells (or fuses) are determined. Table 5
highlights the address and data shift register (SR) sizes
for currently available ispLSI devices. The JEDEC file for
these ispLSI devices will reflect the number of cells
(fuses) seen in Table 5. The total number of cells be-
comes critical if the programming patterns are to be
stored in an on-board memory storage of limited capacity
such as EPROM or PROM.

The L-fields in the JEDEC programming file indicate the
link or fuse numbers of the device. The first cell of the
device is indicated by cell number LO0000. L-fields of
subsequent lines are optional. From this reference cell
location, all other cell locations are determined by relative
position. A zero (0) in the cell location indicates that the
E2 cell in that particular location is programmed (or has
a logic connection intact). A one (1) in the cell location
indicates that the cell is erased (equivalent to an open
connection). The logic compiler software automatically
generates this JEDEC standard programming file after
the design has been fit into the device.

Fuse Map to Device Conversion

While the ispCODE software takes care of this detail, it is
important to understand how the JEDEC fuse map is
mapped onto the physical ispLSI device during program-
ming. The physical layout of the fuse pattern begins with
Address Row 0 and ends with the maximum Address
Row N and is determined by the length of the Address SR
asdescribedin Table 5. Spanning the Address Rows are
the outputs of the High-Order Data SR and Low-Order
Data SR, as described in Table 6. Programming fuses on
a given row are enabled by a “1” within the Address Shift
Register for the appropriate row and the use of state
machine instructions that selectively operate on the
High-Order Data SR or the Low-Order Data SR. For
example, the PRGMH instruction programs the High-
Order data bits within the device for the selected Address
Row and the PRGML instruction programs the Low-
Order data bits (Table 4 lists the ISP state machine
instructions). Referring to Figure 11, the starting cell
(LO0000) of the JEDEC fuse map shifts into the device at
the physical location corresponding to Address Row 0,
High-Order Data SR bit 0. The "n" and "m" in the figure
refer to the Address SR length and the Data SR length,
respectively, of the device (Table 5). A series of sequen-
tial shifts eventually results in the last cell location (Total
#of Cells - 1) of the JEDEC fuse map shiftinginto Address
Row (n-1), Low-Order Data SR bit (m-1) on the actual
device.

The ispCODE Software routines make use of a bit packed
data format, called ispSTREAM™, to transfer data be-
tween the JEDEC fuse map and the physical device
locations. The binary ispSTREAM format uses one bit to
represent the state of each of the programmable cells,
instead of the byte value used in an ASCIl JEDEC file.
Considering the additional characters present in a JE-
DEC file, this adds up to a space savings of more than a
factor of eight. In addition, the ispSTREAM does not
require any parsing; the bits are simply read from the file
and shifted into the device. As only 804 bytes are re-
quired to store the pattern for an ispGAL device, multiple
patterns can be stored in a small amount of memory. The
JEDEC fuse map can be translated into ispSTREAM
format using the isp_jedtoisp function and the ispSTREAM
format can be translated into a JEDEC fuse map using
the isp_isptojed function.

Table 5. ispLSI Address and Data Shift Register and Total Cell Summary

ispLSI 1016 ispLSI 1024 ispLSI 1032 | ispLSI 1048/C | ispLSI 2032 ispLSI 3256
Address SR Length 96 102 108 120/155 102 180
Data SR Length/Address 160 240 320 480/480 80 676
Total Number of Cells 15,360 24,480 34,560 57,600/74,400 8,160 121,680
2-15 In-System Programmability Manual

Hardware Basics

Table 6. Summary of ispLSI Data Shift Register Bits

Data SR Bits ispLSt 1016 ispLS! 1024 ispLSI 1032 ispLSI 1048/C ispLSI 2032 ispLSI 3256
High Order Data SR LSB 0 0 0 0 0 0
High Order Data SR MSB 79 119 159 239 39 337
Low Order Data SR LSB 80 120 160 240 40 338
Low Order Data SR MSB 159 239 319 479 79 675
Data SR Size (Bits) 160 240 320 480 80 676

Figure 11. ispLSI Device to Fuse Map Translation

DATA DATA

] ' —{[(m/2)-1] ... High Order Shift Re isterJO
SDI ——»] I [L, guer '_}-» SDo

(m-1) ... Low Order Shift Register ... (m/2)
Row Addr. In (SDI)

(1]
L
(]
k7
g
2 o
E=CMOS Cell Array o
7
[}
(%2}
Q
°
©
<
Low-Order SR High-Order SR
Fuse# (m-1) «—— Fuse# (m/2)| Fuse# [(m/2)-1] «——— Fuse# 0 !
SDO

2-16 In-System Programmability Manual

Hardware Basics

Algorithms

Command Stream

The first step in programming an ispLSI| device is to
determine the device type to be programmed. This is
ascertained by reading the eight-bit ID of every device.
By keeping SDI to a known level (either high or low), the
ID shift can be terminated when a sequence of eight ones
or eight zeros is read. From the device ID, the serial bit
stream for programming can be arranged. A typical
programming sequence is listed below:

1) ADDSHFT command shift

2) Execute ADDSHFT command
3) Shift address

4) DATASHFT command shift

5) Execute DATASHFT command
6) Shift high order data

7) PRGMH command shift

8) Execute PRGMH

9) DATASHFT command shift

10) Execute DATASHFT command
11) Shift low order data

12) PRGML command shift

13) Execute PRGML

14) Repeat from 1) until all rows are programmed

Diagnostic Register Preload

This section explains how to preload all of the buried
registers and I/O registers to a known state to test the
logic function of a device. The process of loading the
register reduces the time necessary to test a function that
is deeply embedded in the logic of an ispLSI device.

Table 7. Preload Shift Registers

To preload a device, the ISP state machine uses the
same five pins as are used for programming (ispEN, SD!,
MODE, SDO and SCLK). Two state machine commands
preload all of the registers: GLBPRLD and IOPRLD.
These commands enable two shift registers and allow
data to be loaded into the device. The steps for loading
data into the device are listed below:

1. Enter the ISP programming mode by driving ispEN to
Vil.

2. Load command GLBPRLD and execute command
(wait one tclk).

3. Clock in the GLB preload data.

4. Load the command IOPRLD and execute the com-
mand (wait one tclk).

5. Clock in the I/O preload data.
6. Return to the Normal Mode by driving ispEN pin to Vih.
7. Execute the vectors.

When preloading a device it is important to keep the
dedicated input pins (RESET, YO, Y1, Y2 and Y3) in the
same state as in the previous vector. If the state of these
pins is switched during the preload sequence, the regis-
ter may not load correctly and the results are not
guaranteed.

The preload feature is not recommended for designs
using product term resets. The asynchronous nature of
the resets can cause registers to be reset unexpectedly;
therefore the results are not guaranteed.

There are two shift registers used to preload an ispLSI
device: the GLB shift register and the I/O shift register
(Table 7). The data format for both devices is shown in
Figure 12. The GLB registers are listed with their outputs
(i-e. (A7 O0) indicating output 0, of GLB A7).

Device

GLB Shift Reg. Length

VO Shift Reg. Length
ispLSI 1016 64 bits 32 bits
ispLSI 1024 96 bits 48 bits
ispLSI 1032 128 bits 64 bits
ispLSI 1048/C 192 bits 96 bits
ispLS| 2032 32 bits N/A
ispLS| 3256 256 bits 128 bits
2-17 In-System Programmability Manual

Hardware Basics

Figure 12. GLB Shift Register and I/O Shift Register Format

GLB Shift Register Format

1016 GLB Register Preload Format

Data In Data Out
(SDIy —| (A7 00) (A7 O1)..(A0 02) (A0 O3) (B0 OO) (BO O1)..(B7 O2) (B7 O3) [—» (SDO)

1024 GLB Register Preload Format

—»|(B300)..(B0 03) (A7 00)..(A0 03) (B4 00)...(B7 03) (CO 0O0)..(C7 03) |—» Df‘s‘gg)“‘

Data In
(SDIy

1032 GLB Register Preload Format

D(‘;tgl')" —»| (8700)..(80 03) (A7 00)..(A0 03) (C000)..(C7 03) (DO 00)...(D7 03) D{’S‘gg)‘"

1048 GLB Register Preload Format

D(Z’SI')" —»| (C700)..(CO 03) (B7 00)...(B0 O3) (A7 OO0)...(A0 O3) (continued)

(continued) (DO O0)...(D7 0O3) (E0 00)...(E7 03) (FO 00)...(F7 O3) — D(“‘S‘gg;"

2032 GLB Register Preload Format

° —> D t
(ast&')" (A300)...(A0 03) (A4 00)...(A7 O3) > (astao 8)11

3256 GLB Register Preload Format

D(astgll)n —| (D7 00)...(D0 03) (C7 00)...(CO 03) (B7 00)..(B0O 0O3) (A7 O0)...(A0 03) (continued)

Data Out

(continued) (E0 00)...(E7 O3) (FO 00)...(F7 O3) (GO 00)...(G7 083) (HO 00)...(H7 O3) —» (SDO)

1/0 Shift Register Format*

1016 1/O Register Preload Format

Datin o5 15) (110 14) (O 13)...(/O 1) (O 0) (VO 16) (/O 17)...(1/O 29) (VO 30) (/O 31) Deia Out

(SDI) (SDO)
1024 1/O Register Preload Format
D(g‘S")“ — | (10 23) (110 22) (O 21)...(/O 1) (O 0) (/O 24) (VO 25)...(/O 45) (1/O 46) (I/O 47)|—> Dé'gg;“

1032 1/O Register Preload Format

Dataln |10 31) (1/0 30) (11O 29)...(1/O 1) (O 0) (/O 32) (O 33)...(/O 61) (IO 62) (/O 63)|—= Data Out

(SD1) (SDO)
1048 1/O Register Preload Format
D(astgll)n —{ (/0 47) (/0 46) (1/O 45)...(1/O 1) (/O 0) (I/O 48) (1/O 49)...(I/O 93) (/O 94) (/O 95)[—» D(astaog;n

3256 /0O Register Preload Format

Data In Data Out
(sDl) —| (/0 63) (/0 62) (/0 61)...(1/O 1) (I/O 0) (1/O 64) (1/O 65)...(1O 125) (I/O 126) (110 127) (SDO)

* ispLSI and pLSI 2000 family members do not have I/O registers.

2-18 In-System Programmability Manual

Hardware Basics

Boundary Scan

The Lattice ispLSI 3000 family of devices supports the
IEEE 1149.1 Boundary Scan specifications. The follow-
ing sections explain in detail how to interface to the
devices through the Test Access Port (TAP), how the
boundary scan registers are implemented within the
devices, and the boundary scan instructions that are
supported by the ispLSI and pLSI 3000 family

Test Access Port (TAP)

The test access port of the boundary scan is accessed
through six interface signals: TDI, TDO, SCLK, BSCAN,
TMS, TRST. These interface signals have two functions
in the case of the ispLSI 3000 family; they serve as both
the Boundary Scan interface and in-system program-
ming interface signals. For the pLSI 3000 family, the six
interface signals are only used for the boundary scan
TAP interface. Table 8 describes the interface signals.

The above mentioned six signals are dedicated for Bound-
ary Scan use for the pLSI family of devices. As ISP
programming is accomplished through the same pins,

Table 8. Boundary Scan Interface Signals

five of the six signals have both Boundary Scan interface
and ISP functions on the ispLSI devices. TRST is the only
signal that does not have a dual function. It is used only
to reset the TAP controller state machine. The sequenc-
ing of test routines are governed by the TAP controller
state machine. The state machine uses the TMS and
TCK signals as its inputs to sequence the states. Figure
13A is the IEEE1149.1 specified state machine. The
condition for the state transition is the state of the TMS
input condition before TCK within a given state. The
timing diagram is also shown in Figure 13B.

The main features of the TAP controller state machine
include Test-Logic-Reset state to reset the controller and
the Run-Test states. Two main components of the Run-
Test states are Data Register (DR) control states and
Instruction Register (IR) control states. Both of these
register control states are organized in a similar manner.
The user can capture the registers, shift the register
string, or update the registers. Capturing the DRs simply
loads the DR with the data from the corresponding
functional input, output, or I/O pins. The IR capture, on
the other hand, loads the IRs with the previously ex-
ecuted instruction bits. Shift register states serially shift

pLSI 3.000 ispLSI ?000 Pin Function Description
Family Family

Active high signal on this pin selects the Boundary Scan function while active low signal

BSCAN BSCAN/ispEN | selects the ISP function on the ispLSI devices. Internal pullup on this pin drives the
signal high when the external pin is not driven.

TCK TCK/SCLK Test Clock function for Boundary Scan and serial clock for the the ISP function.

T™S TMS/MODE Test Mode Select for Boundary Scan and MODE control for the ISP function.
Test Data Input for Boundary Scan and Serial Data Input for the ISP function. Functions

TDI TDI/SDI .) - .
as a serial data input pin for both interfaces.

TRST TRST Test Re;et Input is an asynchronous signal to initialize the TAP controller to the
Test-Logic-Reset state.

D0 TDO/SDO Test Qata Output fpr Boundary Scap and Seri.al Data Output for the ISP function.
Functions as a serial data output pin for both interfaces.

2-19 In-System Programmability Manual

Hardware Basics

Figure 13A. TAP Controller State Machine

@Test-Logic-Reset |-

0

Y
]
@Run-TeSUIdle |—“——>| Select-DR-Scan '1———>| Select-IR-Scan
A

1 0
Capture-DR
0

1 0

v
Gpdale DR J+—

1 0
Capture-IR
3o

Shift-IR
=
Exit1-IR

v

Y

Figure 13B. TAP Controller Timing Diagram

TCK

TMS or
TDI

TDO

X

tco —?

\
Updw
1 0

2-20

In-System Programmability Manual

Hardware Basics

the DR and IR. In the case of DR shift, the data is shifted
according to the order of the inputs, outputs, and 1/0Os
definedin the Boundary Scan section of each device data
sheet. The IRs are shifted out from the least significant bit
first. During update register states, the DRs update the
latches to drive the external pins and the IRs update the
instruction bits with the instruction that is to be executed.

Boundary Scan Registers

In order to support Boundary Scan, two types of data
registers are defined for the ispL.SI and pLSI devices —
I/O cell registers and input cell registers. The main
purpose of these registers is to capture test data from the
appropriate signals and shift data to either drive the test
pins or examine captured test data.

Figure 14 describes the register for the 1/0 cell. The I/O
cell, by definition, must have three components: one
register component captures the output enable (OE)
signal, the second component captures the output data,
and the third captures the input data. These components
make up the three registers that are part of the shift
register string for each of the 1/0 pins. Only parts of the
I/O cell registers will have valid data when /O pins are
configured as input-only or output-only, thus the test
routines must be able to monitor the appropriate register
bits. The update registers are used mainly to store data
that is to be driven onto the I/O pins. The multipiexer
controls are driven by the signal from the TAP controller
at appropriate states.

The function of an input cell register is much simpler than
that of an I/O cell. Figure 15 illustrates the single input
register cell. The purpose of the Input cell is to capture the
input test data and shift the data out of the shift register
string.

Boundary Scan Instructions

Lattice ispLSI and pLSI devices support the three man-
datory instructions defined by the Boundary Scan
definition. The following paragraphs describe each of the
instructions and its instruction code. A two-bit shift regis-
ter is defined within the devices to implement the
Instruction shift register.

The SAMPLE/PRELOAD (Instruction Code - 01) instruc-
tion is used to sample the pins that are to be tested.
During the Capture-DR state, while executing this in-
struction, the DRs are loaded with the state of the pins
which can then be examined after shifting the data
through TDO. The PRELOAD part of this instruction is
simply loading the DRs during Shift-DR state with the
desired condition for each of the pins.

The EXTEST (Instruction Code - 00) instruction drives
the external pins with the previously updated values from
the DR during the Update-DR state.

The BYPASS (Instruction Code - 11) instruction is used
to bypass any device thatis not accessed during any part
of the test. The definition of the BYPASS instruction
allows TDI not to be driven during the Shift-IR state. In
order to shift in the correct instruction code, the TDI pin
has an internal pull-up to drive logic high. A bypassed
beundary scan device has a single bypass register as
shown in Figure 16.

2-21

In-System Programmability Manual

Hardware Basics

Figure 14. Boundary Scan I/O Cell

GLB
SCANIN M
(from] D Ql—-¢—D
previous X
cell) EXTEST
—P —P
GLB
v OUTPUT |y Da 0 p@
u D Qf¢— D Q X
X
ot b
Update DR
M
U D Q SCANOUT (to next cell)
X
*—
?—>
Shift DR Clock DR
Figure 15. Boundary Scan Input Cell
D Qp— SCANOUT
SCANIN (to next cell)
(from previous
cell) I__>
Shift DR Clock DR
Figure 16. Bypass Register
From TDI — 2 D al- To TDO
Shift DR —|
Clock DR ———>
2-22 In-System Programmability Manual

Hardware Basics

ispGDS Programming Details

The following sections describe the state machine in-
struction set, timing parameters, device layout, and
programming algorithms as they apply to ispGDS de-
vices in general. Figure 17 shows the ispGDS 28-pin
device pinout.

Figure 17. ispGDS 28-Pin PLCC Pinout Diagram

a33885 48

P W A

4 2 28 %
A3 (|5 25[] spo
A4 |] B3
vee [|7 23] B4
As | N Bs
LUNIE] 21[] GND
a7 [N B6
MODE [|11 19[] B7

12 14 16 18

e

® O © O O ® ¥

a4 « o o m gn

Shift Registers

The ispGDS devices have three shift registers, the De-
vice ID shift register, the Instruction shift register and the
Data shift register. All shift registers operate on a First In
First Out (FIFO) basis, and are chosen by which state the
programming state machine is in.

The Device ID shift register is only accessible in the IDLE
state. Itis eight bits long, and is only used to shift out the
device ID. The ispGDS device IDs are 70-72 (hex) (Table
10). The Instruction shift register is only accessible in the
SHIFT state. ltis five bits long, and is only used to shift the
Instruction Codes into the device. The Device ID and
Instruction shift registers expect the LSB to be shifted in
first. The Data shift register is 24 bits long, and is used to
shift all addresses and data into or out of the device. The
Data shift register is only accessible in the EXECUTE
state when executing a SHIFT_DATA instruction (Table 9).

To program an ispGDS device, data is read from a serial
bit stream and shifted into the shift registers. Twenty -four
bits are read at a time, shifted into the device, and then
a programming operation is performed. The exact se-
quence, and the methods for converting a JEDEC map
into a serial bit stream are explained in the "ispGDS
Internal Architecture" section.

Timing

Programming the ispGDS devices properly requires that
a number of timing specifications be met. The specifica-
tions relating to programming and erasing the E2CMOS
cells are the most critical. In addition to a minimum pulse
width, there is also a maximum timing specification.
Refer to the ispGDS programming mode timing specifi-
cations in the Data Book for the timing requirements.
Timing diagrams for the programming mode specifica-
tions are shown in Figures 18, 19, and 20.

Table 9. ispGDS Programming State Machine Instruction Set

Instruction Operation Description

00000 NOP No operation performed.

00010 SHIFT_DATA Clocks data into, or out of, the Data Shift Register.

00011 BULK_ERASE Erases the entire device.

00101 ERASE_ARRAY Erases everything except the Architecture rows.

00110 ERASE_ARCH Erases the Architecture rows only.

00111 PROGRAM Programs the Shift Register data into the addressed row.
01010 VERIFY Load data from the selected row into the Serial Shift Register.
01110 FLOWTHRU Disables the Shift Register (SDI=SDO).

2-23

In-System Programmability Manual

Hardware Basics

Figure 18. ispGDS Programming Mode Timing

Figure 19. ispGDS Shift Register Timing

vee MODE " _
;4 trst h‘ !
MODE / SDI ;
! < th »
| Jtsu TP et etk >
SDI __/‘/—_ SCLK 4
! <tco ¥
SCLK ' N N____ sDoO g< -
¢ tisp > “ tisp >
Vopins Do
Figure 20. ispGDS Program, Verify, and Erase Timing
» Enter EXECUTE state (PROGRAM, VERIFY, or ERASE instruction)
MODE ' e
i ‘ < tpwp, tpwe, »l
SDI . } { | or tpwv
| <th » |
> tsu <
SCLK J N\ / . 4 AN
ispGDS Internal Architecture Figure 21. ispGDS Architecture
This section covers the details of constructing the Address bits S
ispPSTREAM format. Only 49 bytes are required to store v v ova o1 oits of Mt Dt]
the pattern for an ispGDS device. If you are using the 000000 11 Switch Matrix Data I REEEE
supplied software tools, a conversion utility (complete 00 0001 11 L B AL
with source code) is included to convert an industry- g‘;.g‘:ﬂ 3 A
standard JEDEC file to ispSTREAM format. All of the oo il 11111
Lattice software routines read and write thisispSTREAM. 00 0101 11 o 1111
00 0110 11 1111
The ispGDS devices are composed of two basic archi- IRERE o AARY
tectural components (Figure 21). The first component 23}32? :: m:
consists of three rows of architectural information, which 2 1010 11 Yy - e
contain the three bits that control the function of each
I/O cell. The rows are 24 bits long, providing one bit for - 16 bits of UES data — ——— - »
each I/O cell (the ispGDS18 and ispGDS14 do not use all 32 m; " % UES Data !
of the bits). The second component contains the cell data UES Data
for the switch matrix area of the device and the User - 22 bits of Architecture data >
Electronic Signature (UES) data area. There are two o1 Architscture Control Bi:CO
UES rows of 24 bits each, and 11 switch matrix rows of 10 Architecture Gontro! Bit:C1
24 bits each. 1 Architecture Control Bit:C2
SDI —» ~Shift Register (24 bits) “]-»spo

2-24

In-System Programmability Manual

Hardware Basics

Although the shift register lengths are 24 bits long, it is not
composed entirely of data area. In the architectural
section, two bits are used for addressing. In the matrix/
UES area, six bits are used for addressing. in the switch
matrix area, there are only 11 bits of actual data, and
seven dummy bits which exist only to make the shift
registers the same length. These seven bits are read as
aone, or a logic High on SDO. For the UES, there are 16
bits of actual data in each row and two dummy bits.

ispGDS ispSTREAM Format

To convert the information in a standard JEDEC file into
the ispSTREAM format, add all of the addressing infor-
mation and the placeholding bits (dummy bits). The
objective is to include every bit needed for programming.
For the three architecture rows, simply add the two
address bits.

For the UES and Switch Matrix rows, there are eight bits
to add. The first two bits are always 00, which distin-
guishes this area from the Architectural row. In addition,
there are four bits needed to address the specific row,
and two bits needed as placeholders. In the Switch Matrix

Figure 22. ispGDS ispSTREAM Format

ispSTREAM MSB

bit#7 — » | Device ID_| «

Address bits

rows, there are also 5 bits needed for placeholding at the
end of the rows. The various placeholding bits are built
into the device so that all rows appear to be the same
length, thus simplifying programming operations.

The ispSTREAM uses one bit for each programmable
cell. This means that each row includes 24 bits, or three
bytes of storage. With three bytes of storage per row, and
16 rows per device, the ispSTREAM uses only 48 bytes
of storage area. However, there is one extra byte used at
the front of the file to store the device ID code, and a 32-
bit checksum. The ID code is identical to the one that is
hardwired into the device. This ID code ensures that the
ispSTREAM type is the same as the device to be pro-
grammed. For example, if an ispSTREAM is stored in
EPROM, itis stacked end to end. The ID code determines
not only which device type the ispSTREAM belongs with,
but its length, and thus, where the next pattern starts. All
ispSTREAM formats, regardless of which Lattice In-
System Programmable device they are intended for,
contain this ID code in the first byte. See Figure 22 for
details of the ispSTREAM format, and Figure 23 for the
JEDEC map.

v v ve

LSB ispSTREAM
bit # 0
—— Dummy bits
- 11 bits of Matrix Data— > v ispSTREAM

00 0000 11|JEDEC fuses: < bit#8

000001 '11|JEDEC fuses:

OO“ 0010 ;11 JEDEC fuses:

000011 (11 |JEDEC fuses:

00/ 0100 11 |JEDEC fuses:

00] 0101 11|JEDEC fuses:

000110 11|JEDEC fuses: 7

00| 0111 |11 |JEDEC fuses:

00| 1000 11|JEDEC fuses: 98 ..

00/ 1001 11 |JEDEC fuses: 109. .

00| 1010 11 |JEDEC fuses: 120

l€¢ - 16 bits of UES data »

00] 1011 [11]JEDEC fuses: 136......

00| 1100 11| JEDEC fuses: 152 ... cvurresn..s.

) e 22 bits of Architecture data —]

o1 JEDEG fuses: 174.................153
ISPSTREAM 10 JEDEC fuses: 196.........7.7:7.;‘]E o
bit #392 |11 JEDEC fuses: 218................. 197

2-25

In-System Programmability Manual

Hardware Basics

Figure 23. ispGDS JEDEC Fuse Map

C0=174 | 000
222 ||/Oci=196
<< < C3-218
- == [yogiies | o
<< < C3=217
C0=172 | 022
vaa /O Ci=194]
<< < C3=216
C0=171] 033
@ o 1/0O c1=193
<< C3=215
C0=170
s 1/0 c1=192 044
C3=214
C0-169
b /0 G1=1e1 | 02 -
C3=213
C0=168 | 066
o 1/0 c1=190
<< C3=212
C0=167 | 077
~wo 1]/Oc1=189
<< C3=211
C0=166 | 088
o< ||[/Oci=188 .]
<<< €3=210
C0=165 | 099
@r~w ||/O Cc1=187
<< €3=209
o C0=164 | 110
—x< ||/OC1=186
<< €3-208
0 1 2 3 4 5 6 7 8 9 10
gédv
28a 235238 sgs/l88E| Bag| 388 BRE| sl 8h g 3 Ls| RS
kRG] S S S ST S S e S [| | |
aoa OrM|lOor-M| oM |Or-M| oM OO [Oor-m||OM|[O—Mm oO—m
ZIRCIK) QOO0 QOOIVOO|[LVOILVOIVOVOO|OVJ|COO|ILVO|ILOO
olofe|clelelelle|e|e]e
ispGDS22: B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 BO
ispGDS18: B8 B7 B6 BS5 B4 B3 B2 B1 BO
ispGDS14: B6 B5 B4 B3 B2 B1 BO
User Electronic Signature
121,122... ...151,152]
Byte 3 |Byte 2 Byte 1 |Byte 0 |
M L
S S
B B

2-26 In-System Programmability Manual

Hardware Basics

Algorithms

ispGDS device programming is described as a hierarchi-
cal setof algorithms and functions. This section contains
high-level algorithms for erasing, programming, verify-
ing, and loading ispGDS devices. A universal set of
functions is used to make up the algorithms and enable
them to be written in a modular format. The individual
functions are explained in the next section. Note that
most procedures leave the device in the SHIFT state.
These algorithms and functions closely follow the
ispCODE source code library that Lattice provides.

Listing 1. ispGDS Programming Algorithm

To simplify the algorithms, all operations use an
ispSTREAM format as the data structure from which to
read and write. The ispSTREAM contains the address
information and simplifies the operations considerably.
Working from the ispSTREAM, the device appears as an
array of 16 rows, each 24 bits long.

Program Algorithm

Before programming a device, it must be erased. Cells
can be programmed (set to a JEDEC zero) using the
programming command, but only an Erase procedure
erases a cell (setacellbacktoa JEDEC "1" (one)). Inthe
algorithm in Listing 1, the entire device is erased (Bulk
Erased), and then the entire device is programmed.

To program a device:

Call procedure:
Call procedure:
(Erase entire device)
Call procedure:
Call procedure:
Call procedure:
Call procedure:
Call procedure:
Set row_count =0
Loop until row_count = 15
(Program one row on each loop)
Call procedure:
Call procedure:
Call procedure:
x 24)
Call
Call
Call
Call
Call
Call
End Loop

Wait (Erase_Time)

procedure:
procedure:
procedure:
procedure:
procedure:
procedure:

Wait (Program Time)

Get_ID (to check device type)
Change State (from IDLE to SHIFT state)

Shift Command, with command: ERASE
Change_State (to EXECUTE State)
Execute_Command (starts operation)

Change State (to SHIFT state)

Shift Command, with command: SHIFT_DATA
Change State (to EXECUTE State)
Shift Data_In, with data location in ispSTREAM at (row_count

Change_State (to SHIFT state)
Shift_Command, with command: PROGRAM
Change_State (to EXECUTE State)
Execute_ Command (starts operation)

Change_State (to SHIFT state)

2-27

In-System Programmability Manual

Hardware Basics

Load Algorithm

The load algorithm in Listing 2 is the same for all ispGDS
devices. First, the 13 rows of array data (11 rows for the
array matrix, and two for the UES) are read, and then the
three rows of architectural information are read. After
each row is read, it is stored in an ispSTREAM format.

In order to load each row’s data into the shift register, it
is necessary to load the address of the row into the
appropriate area of the shift register. Because of the
unique way the different areas of the device are ad-
dressed, the simplest way to get the addresses into the
device inthe properorderis to use an existingispSTREAM

Listing 2. Load Algorithm

to supply those addresses. In other words, the full data for
each row is loaded from the ispSTREAM into the device.
When a VERIFY command is executed, the device’s data
for the same row is then loaded into the shift register to
be shifted out. This method will be used in this algorithm.

When using an existing ispSTREAM to suppiy the ad-
dresses, the data should not be the same as the expected
data, or a failure to verify may not be detected. To avoid
this possibility, a pattern that contains all "1s" (ones) for
data can be used (and is supplied with the software tools
provided by Lattice). This ispSTREAM still has the ad-
dresses intact, but all programmable cell data is set to a
"1" (one) (erased state).

To load a device:

Call procedure: Get_ ID (to check device)

Call procedure: Change_State (from IDLE to SHIFT state)

Set row_count =0
Loop until row_count = 15

Call procedure: Shift Command, with command: SHIFT_DATA
Call procedure: Change_State (to EXECUTE State)
Call procedure: Shift_Data_In, with data location in Source ispSTREAM at

(row_count x 24)

Shift_Data Out, with data location in Target ispSTREAM at

Call procedure: Change_ State (to SHIFT state)

Call procedure: Shift Command, with command: PROGRAM
Call procedure: Change_State (to EXECUTE State)

Call procedure: Execute_ Command (starts operation)

Call procedure: Change State (to SHIFT state)

Call procedure: Shift Command, with command: SHIFT_DATA
Call procedure: Change_State (to EXECUTE State)

Call procedure:

(row_count x 24)

Call_procedure: Change_State (to SHIFT state)

End Loop

2-28

In-System Programmability Manual

Hardware Basics

Verify Algorithm
A row by row verification procedure is used to verify the
ispGDS device. This procedure is basically the same as

FYR

the Load aigorithm, except that each row is compared

Listing 3. Verify Algorithm

with (instead of stored in) an ispSTREAM as the data is
shifted out of the device. Note that the special pattern
used for verifying is used to load the addresses, asinthe
Load aigorithm.

To verify a device:

Set row_count =0

Loop until row_count = 15
Call procedure:
Call procedure:
Call procedure:
(row_count x 24)
Call procedure:
Call procedure:
Call procedure:
Call procedure:
Call procedure:
Call procedure:
Call procedure:
Call procedure:
Call procedure:

Wait (Verify Time)

End Loop

Call procedure: Get_ID (to check device type)
Call procedure: Change_State (from IDLE to SHIFT state)

Shift_Command, with command: SHIFT_DATA
Change_State (to EXECUTE State)
Shift_Data_In, with data location in Source ispSTREAM at

Change_State (to SHIFT state)
Shift Command, with command: VERIFY
Change_State (to EXECUTE State)
Execute Command (starts operation)

Change_State (to SHIFT state)

Shift Command, with command: SHIFT_DATA

Change_State (to EXECUTE State)

shift_Data Out, with data location a 24 bit temporary buffer
Compare temp row buffer with data location in ispSTREAM to be verified
against, at (row_count x 24) Verify Error if the 24 bits don’t match

Call procedure: Change_State { to SHIFT state)

2-29

In-System Programmability Manual

Hardware Basics

ispGDS Procedures

This section describes the procedures that make up the
program, verify, and load algorithms for the ispGDS
family of devices. The procedures are written so that
each algorithm may be written in a high-level modular

farmat anllina ana af tha follaowina nracadiirag tno actuially
10rmat, Caning Cne C1 ine iCiCWINgG ProCeaures 1€ atiuany

change pin levels and handle timing.

Important: Notice that most of the procedures are writ-
ten so that the state machine is left in the Shift State,
ready to perform the next operation. This point is impor-
tant in keeping all the routines compatible.

Goto_IDLE Procedure

The Goto_IDLE procedure resets the programming state
machine to the IDLE state, regardless of which state it is
in.

Procedure Steps:

set MODE pin High, and SDI pin Low
wait Tsu

bring SCLK pin High

wait Tclkh

bring SCLK pin Low

(END Procedure)

Get _ID Procedure

The 8-bit device ID codes identify the three different
ispGDS devices (Table 10). The ID is read in the IDLE
state by first loading the ID into the shift register and then
clocking the data out. The ID is loaded by holding MODE
high and SDI low and clocking the device. The ID is
clocked out of the device by holding MODE low and
clocking SCLK. Only seven clock cycles are required,
since the first bitis available at SDO after the ID is loaded.

Table 10. ispGDS Device Codes

Device Pins Device ID

ispGDS22 | 28 0111 0010 (72 hex)
ispGDS18 | 24 0111 0001 (71 hex)
ispGDS14 | 20 0111 0000 (70 hex)

Procedure Steps:
set MODE pin High, and SDI pin Low
wait Tsu
Set SCLK pin High
wait Tclkh
Set SCLK pin Low
set count =0
get value from SDO and store in temp_buffer{0]
set count =1
loop until count ==
bring SCLK pin High
wait Twh
bring SCLK pin Low
wait Twl

get value from SDO and store in
temp_buffer[count]

End loop
(Device ID code is now stored in the temp_buffer array)

(END procedure)

Change_State Procedure

The Change_State procedure changes the program-
ming state machine to the next state, according to the
state diagram.

Procedure Steps:

set MODE pin High, and SDI pin High
wait Tsu

bring SCLK pin High

wait Th

set MODE pin Low, and SDI pin Low
wait Tclkh

bring SCLK pin Low

(END Procedure)

2-30

In-System Programmability Manual

Hardware Basics

Shift_ Command Procedure

The Shift_Command procedure shifts a five-bit com-
mand into the device’s shift register. The various
commands should be coded so the procedure can use a
mnemonic (such as PROGRAM), and the controlling
software can use the appropriate five-bit sequence for
that command.

Procedure Steps:

set MODE pin Low

set count =0

loop until count == 4
get next bit of command code (count = bit number)
set SDI pin to bit value
wait Tsu
bring SCLK pin High
wait Tclkh
bring SCLK pin Low
count = count +1

End loop

(END Procedure)

Shift_ Data_In Procedure

The Shift_Data_In procedure explains the steps to clock
a row of data into the device, reading the data from an
ispSTREAM. This procedure shifts in 22 bits of data, and
is used for all 16 rows.

Procedure Steps:

set MODE pin Low
set count =0

loop until count == 23

get next bit from ispSTREAM (bit number = count x
row_number)

set SDI pin to bit value
wait Tsu
bring SCLK pin High
wait Tclkh
bring SCLK pin Low
End loop
(END Procedure)

Shift_ Data_Out Procedure

The Shift_Data_In procedure explains the steps to clock
a row of data out of the device and store it in an
ispSTREAM. This procedure shifts out 22 bits of data,
and is used for all 16 rows.

Procedure Steps:

set MODE pin Low

wait Tsu

set count =0

loop until count == 23
bring SCLK pin High
wait Tclkh
bring SCLK pin Low

get value of SDO pin and store as next bit in
iSpSTREAM (bit number = count x row_number)

End loop
(END Procedure)

Execute_Command Procedure

The Execute_Command procedure causes many of the
commands to begin executing after the state machine is
in the EXECUTE state.

Procedure Steps:

set MODE pin Low, and SDI pin Low
wait Tsu

bring SCLK pin High

wait Twh

bring SCLK pin Low

(END Procedure)

Wait Procedure

The Wait procedure waits the indicated time to ensure that
various timing parameters are met. This procedure is likely
to be used when executing the PROGRAM and ERASE
procedures, which need a long delay (tens of milliseconds).
The other timing parameters may be guaranteed by the
system timing. Various timing parameters should be coded
so that a mnemonic may be passed to the procedure.

Procedure Steps:
wait the indicated time

(END Procedure)

2-31

In-System Programmability Manual

Hardware Basics

ispGAL Programming Details

The following sections describe the state machine instruction
set, timing parameters, and device layout as they apply to
ispGAL devices in general. Figure 24 shows the ispGAL22V10
28-pin device pinout.

Figure 24.ispGAL22V1028-Pin PLCC Pinout Diagram

__ 35288
a2 " %)
105 2501 vo/Q
10 0 vo/Q
107 230 vo/Q
MODE i sDO
| ! 9 21 vo/a
[D vo/a
g1 190 vo/Q
R U R
Shift Registers

The ispGAL device has four shift registers: Device ID, Instruc-
tion, Data, and Architecture. All shift registers operate on a First
In-FirstOut (FIFO) basis, and are enabled by the programming
state machine.

The Device ID shift register is only accessible in the IDLE state.
Itis eightbits long, and is only used to shift out the device ID. For
the ispGAL22V10, the ID is defined to be 08 (hex). The
Instruction shift register is only accessible in the SHIFT state.

_Itis five bits long, and is only used to shift the Instruction Codes

into the device. The Data and Instruction shift registers expect
the LSB to be shifted in first. The Data shift register is 138 bits
long, and is used to shift all addresses and data into or out of the
device. The Data shift register is only accessible in the EX-
ECUTE state when executinga SHIFT_DATA instruction. The
Architecture shift register is 20 bits long and the Output Logic
Macro Cell (OLMC) 1's S1 architecture bit is shifted in first and
OLMC 10’s SOarchitecture bitis shiftedinlast. The Architecture
shift register is accessed during the EXECUTE state, when the
ARCH_SHIFT instruction is executed.

To program an ispGAL device, data is read from a serial bit
stream and shifted into the shift registers. The data is read 138
bits ata time, shifted into the device, and then programmedinto
the device through a programming operation. Table 11 de-
scribestheinstructions fortheispGAL state machine. The exact
sequence and methods for converting a JEDEC map into a
serial bit stream are explained in the Intemal Architecture
section.

Timing

Programming the ispGAL devices properly requires that
anumber of timing specifications be met. Most critical are
the specifications relating to programming and erasing
the E2CMOS cells. In addition to a minimum pulse width,
there is also a maximum specification for these parameters.
Refer to the ispGAL programming mode timing specifica-
tions for the timing requirements, which are identical to the
ispGDS specifications. Diagrams for the programming mode
specifications are shown in Figures 18, 19, and 20 of the
ispGDS timing section in this manual.

Table 11. ispGAL Programming State Machine Instruction Set

Clocks data into, or out of, the Data Shift Register.

Erases everything except the Architecture rows.

Programs the Serial Shift Register data into the addressed row

Load data from the selected row into the Serial Shift Register.

Instruction Operation Description

00000 NOP No operation performed.

00010 SHIFT_DATA

00011 BULK_ERASE Erases the entire device.

00101 ERASE_ARRAY

00110 ERASE_ARCH Erases the Architecture rows only
00111 PROGRAM

01010 VERIFY

01101 IOPRLD Preload the I/O register with given data.
01110 FLOWTHRU Disables the Shift Register (SDI=SDO).
10100 ARCH SHIFT

of the register.

Enables the Architecture shift register for shifting data into or out

2-32

In-System Programmability Manual

Hardware Basics

Securing an ispGAL Device

The iSpGAL devices are not secured by an instruction.

Tn iraianR Al daviane rovar A mrameanaeeoad
v DG\JUIU IO'JUI'\L. UTVILTO, TUW U | IIIuDl uc proygraimniicu

inthe same mannerthat other data rows are programmed.
When programming this security row, the data bits are
"don't care."

Internal Architecture

This section describes the internal architecture of the
device as it relates to programming.

This section covers details of constructing the ispSTREAM
format. If you are using the supplied software tools, a
conversion utility (complete with source code) is included
to convertanindustry-standard JEDEC file toispSTREAM
format. All of the Lattice software routines read and write
the ispSTREAM format.

Three components comprise the ispGAL device pro-
gramming architecture (Figure 25): 44, 132-bit rows of
AND array, one 64-bit row of User Electronic Signature
(UES), and one 20-bit row of architecture information.

The AND array section of the physical layout is organized
so that each column of JEDEC fuse numbers shown in
the logic diagram of the ispGAL22V10 corresponds to
one row of shift register for the device layout. Each
physical row is 132 bits long. With each row of AND array
data, there is a 6-bit row address associated with it, which
including the row address bits, makes the shift registers
138 bits long. The row address bits must be shifted into
the shift register along with the AND array data. Execut-
ing a PROGRAM command following the combination of
data and row address shift programs the row that is
specified by the shift instruction.

The I/O preload (IOPRLD) is performed in the same order
as the Architecture shift register shown in Figure 25.
Once in I/O Preload, the length of the shift register is
determined by the number of I/Os that are configured as
registered output (see the "Architecture” section of the
ispGAL22V10 data sheet). The length of the shift register
and the order must be determined before IOPRLD can be
executed.

The UES row is unique in that it is only 64 bits Iong When
the row address bits are added to the row itself, the total

shift register length required to fully specify the UES row
is 70 bits long. In other words, only 70 bits out of the 132-

bit shift register are used for the UES. The 20-bit Archi-
tecture shift register is selected when the ARCH_SHIFT
instruction is executed. The OLMC 0, S1: OLMC 0, S0;
OLMC 1, S1: OLMC 1, S0: etc. are shifted in order with
the last bit of the shift register being OLMC 10, SO.

Figure 25. ispGAL Device Shift Register Layout

8-bit ID Shift Register

SOI B7BS... ..B1B0

SDO

SDI —» 138-bit Address/Data Shift Register
Row Addr. [000000 [JEDEC Fuse #._ 576457205676 & .. 00880044 0000
1|__o00001 _ MEDEC Fuse #: 576557215677 0089,0045,0001
3
k@ - Ebits - - ol eoeeoee 132bits - - n v e e ne s S T >
AND Array (5808 bits) :
42 101010 MEDEC Fuse ¥ 5606,5762,5718 0130,0086,0042
43| 101011 JIEDEC Fuse #: 5807,5763,5719 . ¥ .. 0131,0087,0043
44 101100 _ PEDEC Fuse #: 58915890 ... UES (64bits) ... 5820,5828

Architecture Shift Register
SDI —’i}EDEC Fuse #: 5826,5827,5825 5811,5808,5809 ’—b SDO

358

OLMC2: 81
OLMC1: S0
OLMC1: 81

OLMC10;
OLMC10:
OLMC 9:

Algorithms and Procedures

The ispGAL's programming algorithm and programming
procedure are very similar to the ispGDS. For the sake of
brevity, please refer to the algorithm and procedures
section in the ispGDS section if you are interested in this
information. If you have further questions, please call the
Lattice Hotline at 1-800-FASTGAL.

2-33

In-System Programmability Manual

-

Hardware Basics

ISP Daisy Chain Details

This section provides a detailed look at the issues asso-
ciated with daisy chain programming. Before examining
the details, the reader should understand the differences
between ISP devices. This section describes those dif-
ferences and the unique programming features of each
ISP device.

ISP Overview for Daisy Chain

Similarities and Differences Between Devices

For the purpose of cascading, ISP devices can be cat-
egorized into two device groups: ispLS| and ispGDS/
ispGAL. Table 12 highlights the similarities between
these device groups.

Using the same state machine controls makes it possible
to program multiple ISP devices by operating all the
cascaded devices’ state machines in parallel. This syn-
chronizes all the devices during programming within the
daisy chain to a known state. However, having all ISP
devices in the same state does not mean that all devices
are executing the same instruction. The ability of each
device in the daisy chain to execute a different instruction
makes it possible to selectively program one or multiple
ISP devices at a time.

For the ispLSI devices, the active ispEN signal enables
the programming mode. By driving ispEN low, all of the
device I/Os are put into a high-impedance state for
programming and the programming functions for SDI,
SDO, Mode and SCLK are enabled.

For the ispGDS and ispGAL devices, on the other hand,
the I/Os are put into a high-impedance state when the
programming state machine goes into the Command
Shift State. The ispGDS and ispGAL devices do not use
a dedicated ispEN pin for this function.

Most shift operations, such as ID shift and command
shift, are the same for the ispL.Sl and the ispGDS/ispGAL
devices. However, one difference exists in the way that
the address and data are shifted into the devices. The
ispLSI devices have separate address and data shift
commands. The row(s) are selected by the address that
is shifted-in prior to each programming command. The
data can then be shifted with the data shift instruction.
WithispGDS andispGAL devices, both address and data
are shifted-in with a single shift command (the address is
part of the Data shift register). When executing com-
mands that only require a row address, a dummy data
stream or no data can be shifted in place of the data
stream.

ISP Daisy Chain Programming

A specific illustration of multiple device programmingin a
daisy chained environment is shown in Figure 1. The
example shows ISP programming aspects such as iden-
tifying the devices in the daisy chain, shifting commands,
bypassing devices, and executing commands.

All of the programming state machines run in parallel
which keeps the devices synchronized. The program-
ming information for the ISP devices is summarized in
Table 13. Similar details for any ISP device can be found
in the ispLSI Architecture Description in the data book
and in the appropriate device data sheet.

Table 12. Common Features of the ISP Device Families

Common Features ispLSI ispGDS/ispGAL
ID shift register length 8-Bits 8-Bits
Command shift register length 5-Bits 5-Bits

Programming signals

MODE, SDI, SDO, & SCLK

MODE, SDI, SDO, & SCLK

State Machine

3-state with same MODE & SDI
controls for state transitions

3-state with same MODE & SDI
controls for state transitions

FLOWTHRU instruction Yes Yes
Different Features
ispEN signal Yes No

Address & Data shift register
address & data

Different shift instructions for

Both address and data is shifted
with one shift command

Fuse map sizes

devices

Varies for different high density

Varies for different low density devices

2-34

In-System Programmability Manual

Hardware Basics

The first procedure of the programming sequence iden-
tifiesthe devicesinthe ISP chain. The following procedure
describes one way of reading the device IDs.

Load_ID Procedure
setispEN = L

set MODE, SDI =H, L
clock SCLK (Load ID)

Continue to Shift_ID Procedure ...

At this point, the 8-bit ID registers are loaded with the
hardwired device IDs. Figure 26A shows the configura-
tion of the ID shift registers.

After the device ID has been loaded, the following shift ID
procedure sequentially shifts the IDs through to the last
device’s SDO. While the ID is being shifted out, keep SDI
at a known logic level so that the end of the ID stream can
be identified. This is especially important when there are
an unknown number of devices in the ISP daisy chain. By
detecting a sequence of eight zeros or eight ones, the ISP
controller can detect the end of the ID string.

Shift_ID Procedure

... Continued from Load_ID Procedure
set MODE, SDI =L, H

clock SCLK (Shift ID)

if last 8 SDO = H then go to End

else go to Shift_ID

End

Table 13. ISP Programming Information

Now, all of the devices within the ISP daisy chain and
their order can be properly identified. The next step is to
match the proper JEDEC fuse map file to the appropriate
device. There are several programming options at this
point. To simplify the programming routines however,
this example programs the devices one at a time. In
programming time critical applications, the daisy chained
devices can be programmed in parallel. The parallel
programming routines must keep track of the differences
in the fuse map lengths between different ISP devices.

The following procedures illustrate how to shift com-
mands, shift data, and execute commands to program
the ispGAL22V10. Since the ispGAL22V10is the second
device in the ISP daisy chain, these procedures also
illustrate how to put the other devices into flow-through
mode. The following procedure shifts the SHIFT_DATA
command into the ispGAL22V10 and the FLOWTHRU
command into the rest of the ISP devices.

Load_Command Procedure

... Continued from end of Shift_ID Procedure
set MODE, SDI =H, H

clock SCLK (Shift State)

set MODE =L

Loop

set SDI = command stream (Figure 26B)
clock SCLK (Shift Command)

End Loop

End Procedure

Description ispLSl 1032 ispGAL22V10 ispGDS22 ispLSI 2032
Device ID (8-bits) 0000 0011 0000 1000 0111 0010 0001 0101
Command Register 5 bits 5 bits 5 bits 5 bits
Address Shift Register 108 bits n/a n/a 102 bits
Data/Addr. & Data Shift 160 bits (6+132) bits (6+18) bits 40 bits
Register

2-35

In-System Programmability Manual

Hardware Basics

Execute_Command Procedure At the end of the Execute_Command procedure, the

_ state machine is returned to the Shift State. This readies
set MODE, SDI =H, H the devices for another command shift procedure. For
clock SCLK (Execute State) the ispGAL22V10, the DATA_SHIFT instruction of 138

bits includes the row address and the data associated
set MODE =L with the row. Similar procedures can be used to complete
Loop 138 times the programming of the ispGAL22V10.

set SDI = data stream (Figure 26C)

clock SCLK (Execute SHIFT_DATA Command)
End Loop

set MODE, SDI =

clock SCLK (Shift State)

End Procedure

Figure 26A. ID Shift Register Configuration
ispLSI 1032 ispGAL22V10 ispGDS22 ispLSl 2032

SDI —>F>ooo I 0011 }—»! 0000 ‘ 1000 H 0111 I 0010 H 0001 l 0101J—> SDO

Figure 26B. ISP Command Stream

ispLSI 1032 ispGAL22V10 ispGDS22 ispLSi 2032
SDI FLOWTHRU SHIFT_DATA FLOWTHRU »| FLOWTHRU » SDO
(01110) (00010) (01110) (01110)
Figure 26C. ISP Data Stream
ispLSI 1032 ispGAL22V10 ispGDS22 ispLSI 2032

sm—»L 0 Bit SR H!%BHSR }—», 0 Bit SR }—>< 0Bit SR J—»SDO

2-36 In-System Programmability Manual

Software Basics

This section explains the wide variety of software tools
available for the Lattice ISP devices. First, the general
ISP design flow is revisited to help the reader understand
how each software tool fits in the flow. Second, the
software tools that generate a JEDEC fuse map from a
logic design are highlighted, finishing the first half of the
ISP general design flow. Third, the software tools that
program the ISP devices from JEDEC fuse maps are
described, completing the second half of the ISP general
design flow. Finally, the section closes with an additional
software consideration: choosing the proper ATE pro-
gramming approach.

ISP Design Flow

Once the system design has been organized into func-
tional components, and the logic functions which need to
be incorporated in the selected components are defined,
the logic design phase begins with design entry. The
general design flow is shown in Figure 1. Generating a
fuse map from the design and programming the ISP
device completes the general ISP design flow.

Figure 1. General Design Flow

| Design Entry l

v

I Design Verify I

v

L Place and Route I

I

A
[Fusemap Generation |

Simulation

L Device Programming |

Introduction

The basic function of PLD logic design entry and fitter/
compiler software is to convert a logic design into a
JEDEC standard programming fuse map file (also known
as a JEDEC file). There are several ways to create a
JEDEC file from a design. The software you choose
depends on which type of device you are using and what
type of design entry you want to perform. To create a
JEDEC file from a design intended for a low-density
device, you can use most standard logic compilers
including ABEL and CUPL. Additionally, Lattice offers a
stand-alone logic compiler forispGDS devices. To create
a JEDEC file from a design intended for a high-density
device, such as the ispLSI 1000, 2000, or 3000, the
design can be entered using several software environ-
mentsincluding Lattice’s pDS Boolean entry, pDS+ ABEL,
pDS+ Viewlogic, pDS+ LOG/IC, and pDS+ Cadence.

ispGAL Third-Party Logic Compiler Support

For design engineers who are familiar with standard
third-party compiler software packages, Table 1 shows
the third-party logic compilers that support all
ispGAL22V10 devices.

Table 1. ispGAL22V10 Logic Compiler Support

Vendor Logic Compiler
Accel Tech. Tango PLD
PIC Designer Composer
Cadence
PIC Designer Concept
Data VO ABEL
ISDATA LOG/C
Logical Devices CUPL
Mentor Graphics PLSynthesis II
Minc PLDesigner-XL
OrCAD OrCAD PLD
Omation Schema-PLD
Viewlogic ViewPLD

2-37

In-System Programmability Manual

Software Basics

ispGDS Compiler Support

To simplify the development of ispGDS devices, Lattice
offers an ispGDS assembler named "GASM" which pro-
cesses the input ASCII files to generate the JEDEC
compatible fuse map files required for the ispGDS de-
vices. FreeispGDS assembler software is available from
the Lattice Hillsboro BBS at 503-693-0215 under
GDSPKG.ZIP file. This software is also available on
diskette by calling the Lattice Hotline at 1-800-327-8425
(FASTGAL). For design engineers who are familiar with
standard third-party compiler software packages, ABEL
from Data /O and CUPL from Logical Devices also
support all ispGDS devices.

Using the ispGDS Compiler

The compiler will accept an ASCII text file containing the
ispGDS programming instructions, and will create JE-
DEC and .DOC files.

Compiler Syntax

The basic compiler syntax supports inserting comments,
title, device type, pin assignments, and input/output
assignments. The ispGDS compiler source file comment
lines are denoted with quotation marks at the beginning
of the comment lines. The title is defined with the key
word "title =". Any text following the "title =" key word that
is within single quotes is defined to be the title of the
design. Similarly, the device type is defined by the key
word "device =" followed by one of the three valid device
types — ispgds22, ispgds18, ispgds14. The compiler
syntax also allows the user to assign pin names by typing
in a 10 character pin name followed by at least a single
space, the "pin" key word and the pin number. This pin
assignment is optional since the compiler syntax allows
the user to use the "pin" key word and the pin number
directly in the input/output assignments.

The output pins are assigned on the left side of the
equation and the input pins are assigned on the right side
of the equation. To assign an output pin to either high or
low, simply assign "H" or "L" respectively on the right side
of the equation. If you need to assign an input pin to
multiple output pins, use one line for each assignment, as
shown in the following example. In the example below,
pin 28 is an input that is routed to three outputs — pin 1,
pin 2 and pin 3. Furthermore, each output's polarity can
be individually defined. The example shows pin 3 as an
active low polarity whereas pin 1 and pin 2 are defined to
be active high polarity.

pin 1 = pin 28
pin 2 = pin 28
Ipin 3 = pin 28

Assembling a File

To use the assembler, create an ASCIl ispGDS source
file, then invoke the assembler from the DOS command
line. For example:

gasm <test.gds>

where test.gds is the name of the ispGDS source file.
GASM will create a JEDEC file with the same base name,
and a .JED extension, like "test.jed," and a doc file with
a .DOC extension, like "test.doc." Listing 1 illustrates an
ispGDS source format.

2-38

In-System Programmability Manual

Software Basics

Listing 1. ispGDS Source Format

The following text is an example of a ispGDS source file.

"This is a comment (line begins with quotation mark)
title = 'DIP SWITCH REPLACEMENT CONFIGURATION'

" the ispgds device type (ispgds22, ispgdsl8, ispgdsl4)
device = ispgds22

"

pin names are defined as follows

pin_name pin 28

pin 1 is an output connected to pin 28
pin 1 = pin_name
pin 2 = pin 27

pin 3 is another output connected to pin 28
pin 3 = pin 28

pin 5 is always high

pin 5 = h

"pin 6 is always low
pin 6 =

pin 8 = pin 22

"1 defines the inverted output for pin 9
!pin 9 = pin 20

pin 10 = pin 19

pin 12 = pin 17

pin 13 = pin 16

pin 14 = pin 15
Notes

If you get an error regarding "pin 0", you may have duplicated an output pin assignment (by assigning different input signals to
the same output pin). Refer to the line number in the assembler error message to locate the source of the problem.

2-39

In-System Programmability Manual

Software Basics

ispLSI Design Entry and Fitter Support

Lattice offers a wide variety of design entry and device
fitter tools which handle logic entry, device compilation,
and device programming. These tools support a variety
of userinterfaces and entry methods including: Microsoft
Windows® GUI, Cadence Concept/Verilog-XL, Mentor
Graphics, Synopsys, Viewlogic ViewDraw/ViewSynthesis
and PROcapture/PROsynthesis, Data I/0O ABEL HDL or
VHDL and Synario, ISDATA LOG/iC Design System, and
ORCAD. Design flows illustrating these development
software systems are shown in Figures 2a, 2b, 2c, 2d, 2e,
2f, 2g, and 2h.

Design Entry/Synthesis

Lattice's pDS Software allows the user to manually
partition the logic to control design fit and performance.
Using the Microsoft Windows environment, logic func-
tions are placed into Generic Logic Blocks (GLBs) and
I/0 Cells. This can be done by using the Edit, Cut, Copy,
and Paste functions to enter Boolean equations and/or
predefined functions from the Lattice Macro or user
libraries.

In the ABEL environment, in addition to Boolean design
entry, the ABEL HDL formats allow high-level descrip-
tions of counters, adders, comparators, etc. These HDL
languages also support state machines, truth tables and
case constructs for behavioral design implementations.
The Lattice interfaces allow many existing PLD designs
to be easily integrated and converted into ispLSI devices.

For standard CAE schematic designs, the pDS+ Cadence,
pDS+ Synario, pDS+ Mentor, pDS+ Viewlogic and pDS+
ORCAD software applications provide support for graphical
and hierarchical logic implementation using the Lattice
library of primitives and macros. The interfaces also allow
easy integration of system or user-created functions into a
hierarchical schematic using either a top-down or bottom-
up design methodology.

The Lattice Synopsys Synthesis Libraries offer design entry
using device-independent Verilog HDL or VHDL design
languages. These designs are synthesized by Synopsys
Design Compiler or FPGA Compiler using the Lattice
Synopsys Libraries into an ispLS| device-compatible EDIF
design netlist. The pDS+ Synopsys fitter will then partition,
optimize, and fit the design into ispLSI devices. The EDIF
design netlist may also be imported into either Cadence
Concept, Viewlogic, or Mentor Graphics schematic capture
designtools where device implementation control attributes
are applied. The Lattice pDS+ Cadence, pDS+ Mentor, or
pDS+ Viewlogic Fitters then fit the designs.

Design Verification

After entering the logic for the design, the next step is
verification. Verification checks the logic entries for syntax
and design rule violations, minimizes the logic equations as
necessary, and then maps the logic to the physical gates in
the GLBs and IOCs. You can verify each cellindividually, as
each step is completed, or you can verify your whole design
after all cells are completed.

Partitioning

Partitioning using the pDS Software is done by the user as
part of the design entry process. The advanced pDS+ Fitter
tools incorporate Lattice’s automatic partitioner which ac-
cepts converted data from designs entered in Cadence,
Mentor Graphics, Synopsys, Viewlogic, ABEL, Synario,
LOG/iC, and ORCAD tools. Lattice-specific attributes for
design entry are available to guide the partitioner in order to
optimize device features and performance.

Place and Route

All Lattice design tools offer automatic place and route. This
entails placing the GLB (Generic Logic Block) and IOC (/O
Cell) logic and routing (or interconnecting) the source
signals to their destinations. In the ispLSI devices, the
Global Routing Pool (GRP) provides fast interconnects
from external inputs and GLB feedback to GLB inputs. The
Output Routing Pool (ORP) provides flexible interconnects
from GLB outputs to external pins.

Post-route Simulation

After place and route, a netlist for full timing and functional
simulation may be passed to the Mentor Quicksim II,
Viewlogic PROsim™ or ViewSim™, or Cadence Verilog-
XL simulators. Board- and system-level behavioral simulation
models are available from the Logic Modeling division of
Synopsys.

Documentation

Report files, containing partitioned equations and pin-out
information, may be generated for routed or unrouted
designs. The pDS and pDS+ Software can also generate
reports with post-route maximum timing delays. These
reports give specific details about the design and device
resources utilized, GLB usage and fanout, pin names, and
signal attributes in text and table formats.

2-40

In-System Programmability Manual

Software Basics

Figure 2a. pDS Design Flow

Design
Preparation

Design Entry

Design
Verification

Automatic
Place and Route

Timing
-optional M

pDS

Download to
ISP Device
or Programmer

Figure 2b. pDS+ Cadence Design Flow with Synopsys Option

Lattice

3
Verilog
HDL or
VHDL

Synopsys
Design Compiler — Expert
Design Compiler — Professional
FPGA Compiler

Lattice

LibriU

Synthesis
Library

Concept S
Verilog Link Wedifnet
X
Verilog-XL
EDIF
<
Test
Vectors
PDS+ Fitter
3 <
Verilog .SDF
Netlist

E—

Verilog-XL

L

L

2-41

In-System Programmability Manual

Software Basics

Figure 2c. pDS+ Mentor Design Flow with Synopsys

or Autologic Option Verilog

HDL or
VHDL

Synopsys
Design Compiler — Expert
Design Compiler — Professional
FPGA Compiler

Lattice
Synthesis
Lattice Design Architect
Library
— 3
Autologic Lattice
Library
3
L atiice Autologic
Library VHDL Synthesis

pDS+ Fitter

Figure 2d. pDS+ Synopsys Design Flow

Synopsys
Design Compiler — Expert

Design Compiler — Professional
FPGA Compiler

Verilog
HDL or
VHDL

Lattice
Synthesis
Library

Synopsys

EDIF

EDIF2LAF Translation Hanlce Parameter File

utl

]

PDS+ Fitter
Verilog SDF
Netlist WIR
> R
Lattice Verilog-XL Lattice

Library Functional and Timing Simulator

—J

‘ ViewSim

Functional and Timing Simulator Library

2-42 In-System Programmability Manual

Software Basics
Figure 2e. pDS+ Viewlogic Design Flow with Synopsys Option

Synopsys

Design Compiler — Expert [———)
Design Compiler — Expert

Design Compiler — Professional Verilog

Jorlog —
P i
FPGA Compiler VHDL
——
Lattice
Synthesis Synopsys M S
Library Viewdraw/ Viewsynthesis/ Lattice
PROcapture [*™] PROsynthesis Synthesis

Librai

Lattice l I
Library

Test
Vectors

Viewsim/PROsim

il

WIR

PDS+ Fitter

Viewsim/PROsim

Figure 2f. pDS+ ABEL and pDS+ Synario Design Flow

Synario
ABEL)
, Library ABEL

ABEL
Synario Compile/Optimizer

3 i
TMV
P—-———’l Synario Simulator |

VHDL

Lattice

Library
PDS+ Fitter
E Optional
i —
Verilog
Netlist .SDF WIR
3
Latti
| Synario Simulator } Viewsim / PROsim |

2-43 In-System Programmability Manual

Software Basics

Figure 2g. pDS+ LOG/iC Design Flow
———

.DCB File .DDV File

LOG/C
Windows ODC

‘

.LAF File -PAR File

‘

PDS+ Fitter

| Optional
i

WIR

Lattice .
Viewsim / PROsim

Library

Figure 2h. pDS+ ORCAD Design Flow

ORCAD
Language

Lattice ORCAD
Logical | SDT QBSW PLD 386 "—"jDT 386+ Primary
Library l l Library
—>| VST 386+
Test Functional and Timing Simulator
Vectors L
- S
PDS+ Fitter
3
INF DBA
<
Lattice — VST 386+
Physical Functional and Timing Simulator
Library
2-44 In-System Programmability Manual

Software Basics

Device Programming

Programming information is generated on a routed design
by the FuseMap Generator for a specific ispL S| device. Itis
an ASCII file written in the JEDEC format. Using ABEL
software, the user may optionally append test vectors to the
JEDEC file. This allows post-programming functional test-
ing on the actual device.

ISP Programming Software

Introduction

Once the JEDEC file has been generated for a given
design, the design information, which is stored in the
JEDEC file, must be downloaded into the proper device.
The download method depends on the hardware avail-
able and what design stage you are in. For example, you
might program the system with ISP devices during proto-
typing using a PC. Then, when the system goes to full
production, you can use ATE for programming. Finally, if
field upgrades are necessary, you can use the system's
embedded microprocessor to reprogram the ISP de-
vices. Table 2 summarizes the download methods
supported by Lattice.

Table 2. ISP Programming Platform and Download Methods

Programming Platform

Download Methods

PC ISP Daisy Chain Download for Windows
ISP Daisy Chain Download for DOS

ISP Serial Programmer

ispCODE C++ Source Routines

Workstation

iSP DOWNLOAD for the Sun
ispCODE C++ Source Routines

Embedded Processor

ispCODE Executed by Microprocessor

ATE

ISP Serial Programmer- Test Vector Generation Portion
ispCODE C++ Source Routines

Third-Party Programmer

Standard JEDEC File Download

2-45

In-System Programmability Manual

Software Basics

ispCODE

Overview

This section is a guide to using the Lattice ispCODE
software in custom software applications. ispCODE is
C++ source code that you can use to program one or
more ISP devices. The ispCODE software contains a
library of programming routines designed to be easily
ported to different applications and platforms. You can
use the classes in this function library to implement your
specific requirements without knowing the lower level
details of how the ISP devices are controlled. Table 3 lists
the classes in the function library.

Also included in the ispCODE package is C++ source
code for an example Windows application which pro-
grams, reads, and verifies ISP Devices using the parallel
port of your PC. You can use this application as an
example of how to access the ispCODE library. You can
easily modify ispCODE to develop a customized Win-
dows application for ISP programming. More information
on this application, called ISP Serial Programmer, fol-
lows this section.

If you only need to access the ISP devices through the
parallel portofa PC, and do not require any customization,
you can use Lattice’s ISP Daisy Chain Download soft-
ware. This is a stand-alone program that performs
commonly used ISP functions. It can be used without
modification.

If you are developing an ISP application on a platform
other than a PC or Sun Workstation, or you need custom
features, you will need the ispCODE library. To make
customizations easier, you will find that platform-specific
issues, such as port addressing, and timing delays, are
localized in a few routines.

The ISP Design Flow

Figure 3 shows the typical design flow for an ISP applica-
tion. The user starts with a high-level design description
in ABEL, Viewlogic, CUPL, pDS, or some other form. For
the ispGAL 22V10 and ispGDS devices, this description
is compiled by ABEL or another supported compiler and
translated into an ASCII JEDEC file. For the ispLSI
devices, the description is compiled using one of the
Lattice pDS+ Fitters, which produces a JEDEC file. In
either case, the JEDEC file then undergoes another

[, oaTera

transformation into a binary ispSTREAM file. This file

Figure 3. ISP Programming Process

High-Level
Design File \J
ispCODE or
l Download
Program
Compile High-
Level Design File
to JEDEC Y
Program
ISP Devices
JEDEC to
ispPSTREAM
Conversion
Bitstream

File

format is a compressed form of the JEDEC file, and is
small enough to be stored in an EPROM in the user’s
target system if required (handy for microprocessor-
driven programming). The ispCODE uses the ispSTREAM
format to transfer specific design information to and from
the ISP devices.

A Typical ispCODE Application

A generalized block diagram may help you understand
how ispCODE is used in a typical application (Figure 4).
In this application, the ispCODE is modified as needed,
and runs on a target microprocessor. The microproces-
sor interfaces with the ISP devices through a four- or
five-wire TTL level interface (five signals are required for
use with the ispLSI devices, and four signals for the
ispGDS™ and ispGAL22V10).

2-46

In-System Programmability Manual

Software Basics

Figure 4. Configuring an ispLSI® Device from an On-Board Microprocessor

{ ispCODE ?

ispSTREAM
Patterns

5-Pin Programming
Interface

ispLSI
Device

Advantages of C++

The ispCODE software was developed using Borland
C++ 3.1. However, the only compiler-specific features
used are in the demo Windows interface, since Borland’s
OWL 1.0 Library was used. If you are only using the
function library, then there shouid be iiltie dependence on
the compiler, other than to support standard C++ con-
structs.

Since the ispCODE is written in C++, you will find it easy
to port to other applications. The ispCODE classes cor-
respond to the physical hardware you are interfacing to,
making it easy to understand. All access to the ISP
devices occurs through the parallel port of the PC. The
PortClass, the class used to access the port that inter-
faces to the ISP connector, contains all the functions and
data structures necessary to control the parallel port.
These functions are described in "Function Library Inter-
face" and are listed in Table 3in this section. If you need
to access the parallel port, or change the parallel port
method, then this is the only class you need to be
concerned with. Also, through C++ support of inherit-
ance, you can easily extend the functionality of a class,

and still be able to upgrade the software to a newer
version without impacting your customization. For ex-
ample, you may need to add some custom control signals
to the parallel port. Instead of modifying the parallel port
class PortClass directly, create your own port class that
is derived from PortClass. Any new functions you add
should then be added to your port class. If Lattice
releases a new version of the ispCODE in the future,
simply recompile with the new library.

The software is structured into a user interface portion
(serial.cpp) which calls a function library (funclib.cpp) to
work with the serial chain. This enables you to modify the
Windows interface easily without worrying about the
lower level details of manipulating the serial chain, and
also allows you to easily remove the windows interface
portion and use the high level calls into the function library
if you have no need for the Windows interface.

The different classes used in the function library are listed
in Table 3. Figure 5 shows how these classes interact and
how they are instantiated inside the ISPInterface class.

2-47

In-System Programmability Manual

Software Basics

Table 3. Different Classes Used in the Function Library

ISPInterface This class controls all access to the daisy chain hardware, and uses other classes to
access the configuration file, bitstream files, and PC port interfaces.

Conti This class handles all interface with the configuration file, such as parsing the file, verifying
9 that the bitstream files exist, and storing the parsed information in memory.

RowObj This class transfers a row of information to and from a device in the chain.

Fusebuffer This class contains the fuse information for a device that is being read or verified.

PortClass This class controls all access to the parallel port.

Bitstream This class reads a bitstream file, and is used to retrieve fuse info from the bitstream file.

Figure 5. Interaction of ISP Interface Class Functions

Configuration Config
File

File

Bitstream

ISP Interface

RowObj

l Serial Chain |

Fusebuffer A

Y
PortClass PC Parallel Port

Customizing ispCODE

To develop a custom application using ispCODE, please
follow the guidelines listed below:

* Use high-level calls to the function library, and avoid
modifying the function library. As Lattice adds new
devices or enhances programming algorithms, the
contents of the function library may change. If you
change the contents of the function library, you may
find updating to newer revisions difficult. If you ac-
cessthe function library through the function interfaces
described in the Function Library Interface, then you
will be able to replace the function library with a
newer version without any impact.

* Timing is critical for successful programming.
ispCODE uses the Windows Multimedia timer for

high resolution timing (accuracy of 1 ms). If you port
to a different platform, then you will need to modify
this routine to support your target hardware, keeping
in mind that whatever approach you use should
ensure that the minimum and maximum times as
specified in the Lattice Data Book will be met. Refer
to the section on Timing for further details.

If you are porting to another platform other than
the PC, you will need to modify how the ISP inter-
face signals are written out to the parallel port.
Refer to the section on Port Addressing for further
details.

2-48

In-System Programmability Manual

Software Basics

Function Library Interface

You can perform all the ISP programming functions
(reading, writing, and verifying) through three calls to
functions in the function library. There are a few function
calls that you must make for initialization prior to perform-
ing these functions. However, you will see that for almost
all applications these few function calls will provide all the
versatility you need.

These function calls are summarizedin Table 4. Formore
detailed information, refer to the section on Program-
ming, Verifying, and Reading the Serial Chain.

Porting Considerations

In general, there are only two routines that may need to
be modified for running ispCODE on different platforms:
the routine to control timing (ISPInterface::Wait) and the
class to access the port that interfaces to the ISP connec-
tor (PortClass).

Table 4. Function Calls

Timing

You must ensure that minimum and maximum program
general, it is more important to ensure that a minimum
programming time is met. If you modify the timing routine,
the delay errors must occur on the large side. When the
software calls this routine, the routine simply consumes
CPU time until the timing delay is met.

In this example, ispCODE achieves 1 ms resolution
through use of calls to the Multimedia services of Win-
dows 3.1. This is shown in the code fragment in Listing 2.

This routine is passed an integer value that represents
the amount of time in milliseconds that the Wait routine
should wait before returning. Since waiting is the only
function that this routine performs, adapting it to different
platforms is an easy task.

;Class::Function Purpose

PortConfig

Class to access the parallel port, and drive the ISP interface signals. You
will need to modify it for use on piatforms other than the PC.

ISPinterface::IDChain .
chain.

A member function of ISPInterface that builds a list of IDs in the serial

Config

A class to parse and load the configuration file.

ISPinterface::ChainExecute

A member function of ISPInterface that executes command on a
particular device (read, write, or verify) in the serial chain.

ISPiInterface::Wait

A member function of ISPInterface that waits for a specified amount of
time, then returns. Since it uses the Windows Multimedia timer services,
it will need to be modified for different platforms.

Listing 2. Excerpt from <serial.cpp>

ISPInterface::Wait(int val){
// val is the time in milliseconds

current_time=timeGetTime();

NULL;
} .
timeEndPeriod(1);
return(0);

long unsigned int current_time=0,start_time;

timeBeginPeriod(1l); // set to one millisecond and reset time count
// get the current value
while((timeGetTime()-current_time)<(val)){
// hog cpu time until finished

// free up this time

// no chance of rollover

2-49

In-System Programmability Manual

Software Basics

Port Addressing

In the Windows environment, ispCODE uses the parallel
port of the PC to access the ISP Serial Chain. If you
decide to use a different hardware platform, then obvi-
ously this interface class will need to be changed as well.
The PortClass ciass has a member function which corre-
sponds to each bit of the ISP interface (SDI, SDO,
MODE, ispEN, SCLK). To set or clear a bit, call the
appropriate member function with the desired bit value.
PortClass also has a function (Toggle Clock) which can
be called without any value. Ittoggles the clock from zero
to one, then back to zero (Listing 3).

Listing 3. Excerpt from <funclib.cpp>

The routines to change the ISP signal values in turn call
two lower level routines: GetPortBit and SetPortBit, with
a bitmask which is used to set or clear the desired bit on
the port. These two routines are the only ones that
directly access the parallel port of the PC, through the use
of import and export functions. If you port the code to a
different platform, you can simply replace the import and
export functions they call with routines for your target
hardware. Also note that the SetPonBit routine supports
some special configurations for Lattice Demo Board use,
through the use of a switch statement. You can safely
delete these options for your application (Listing 4).

/*

void ChangePort(int iport,
InPort=iport;
OutPort=oport;

/*
SetClock: set the clock bit
*/
void SetClock(int val) {
SetPortBit (CLOCK, val);
/*

ToggleClk: Generate a clock pulse
*/

void ToggleClk(void){
SetClock(0);
SetClock(1l);
SetClock(0);

/*
?etSDI: Set the Serial Data In bit
*
void SetSDI (int val) {
SetPortBit(SDI, val);
}
/*

?etISPEN: Set the ISP Enable bit
*

void SetISPEN (int val){
SetPortBit (ISPEN, val);

/*
SetMode: Set the Mode bit
*/

void SetMode (int val){
SetPortBit (MODE,val);

}
/*
ReadSDO: Read the SDO bit
*/

int ReadSDO (void){
return(GetPortBit (SDO));

ChangePort: Modify the port address pointers InPort and OutPort
*/

int oport){

2-50

In-System Programmability Manual

Software Basics

Listing 4. Excerpt from <funclib.cpp>

-
/*
Get the value of a bit from the port
*/

int PortClass::GetPortBit(unsigned char BitMask)({
unsigned char tmp;
assert ((InPort==IPORTO0) || (InPort==IPORT1) | |(InPort==IPORT2));
tmp=inportb(InPort);
if ((tmp&BitMask)==0)return(0);
else return(l);

/*
y Set the bit in a port to a specified value
*

void PortClass::SetPortBit(unsigned char BitMask, int val){
assert ((val==1)]||(val==0));
assert ((OutPort==0PORTO) || (OutPort==0PORT1) || (OutPort==0PORT2));

do the special decoding for demo board versus standard usage.

the serial demo board needs to do some decoding for mode. the

standard usage doesn't. the demo board also has a serial shift
register clock that requires special decoding.

NN
NONNN

if (BitMask==MODE){
switch (ModeSel){
case DAISY: if(val == 1)({
Portval i= MODE;
Portval &= ~MODE2;

}
else Portval &=-~(MODE | MODE2);
break;
case GDS : if(val ==
Portval |=MODE2;
Portval &=-MODE;

}
else PortVal &= ~(MODE | MODE2);

break;

case I22V : if(val == 1)Portval|=(MODE|MODE2);
else PortVal &= ~(MODE|MODE2);
break;

Note: The cases DAISY, GDS, and I22V are used for some special addressing for the
Lattice Applications Demo boards. You can ignore these cases, and just modify the
STANDARD case for your application.

case STANDARD : if(val== 1)PortVal|=BitMask;
else PortvVal &= ~BitMask;
break;

}

else if (BitMask == SRCLK) { //special stuff for serial clock
if (val == 1){
Portval &=~MODE;
Portval |=MODE2;
}
else PortVal&=~(MODE|MODE2);
else { // not a serial clock or mode bit
if (val == 1){
Portval |=BitMask;
else {
PortVal&=~BitMask;

}
outportb(OutPort, Portval);

2-51 In-System Programmabiiity Manual

Software Basics

ispSTREAM File Size

If you are interested in putting the ispSTREAM files in
EPROM or ROM (to support in-system microprocessor -
driven programming for example), the size of the
ispSTREAM files will be of interest. The sizes of the
ispSTREAM files are listed in Tabie 5. Use this tabie as
a rough guide; the actual file sizes may be slightly
different, but should be within a few bytes of these values.

Table 5. ispSTREAM File Sizes

Lattice Device isSpSTREAM File Size (bytes)
ispGDS14/18/22 51

ispGAL22V10 739

ispLSI 1016 1922

ispLSI 1024 3062

ispLSI 1032 4322

ispLS| 1048 7202

ispLSI 1048C 9362

ispLSI 2032 1022

ispLSI 3256 15212

Configuration File Syntax

The syntax for the configuration file is quite simple. Itis an
ASCII text file that defines the ispSTREAM files to be
loaded into the ISP devices. There is one line per device,
and the first line corresponds to the first device (the
device whose SDO pin is connected to the programming
port). The basic syntax is the device name followed by the
ispSTREAM file name. If you leave the ispSTREAM file
name off, that device is not programmed or verified. The
quote character () is treated as a comment: anything
following the quote is ignored. An example is shown in
Listing 5.

Listing 5. Configuration File Syntax

Programming, Verifying, and Reading the
Serial Chain

If you want to use the function library in your own
application, use the following list as a guide to which
functions to run and when to run them. The code frag-
ments are from the Windows interface code (serial.cpp).
Use the following list as a guide as to how the high-level
routines should be called, and the order in which they
should be called:

1. Use an ASCI! text file format for the configuration file
(see the preceding section "Configuration File Syntax"
for more information). You can then pass the configu-
ration to the function library file and let it handle the job
of parsing and validating the file information.

2. Scan the serial chain before doing anything else, and
verify that the chain is valid. Do this by calling the
function ISPInterface::IDChain. The code fragment
from serial.cpp shows how this is done (Listing 6).

3. Now call the function Config::Readline() repeatedly.
This verifies that the file contents match what is in the
chain (Listing 7).

4. If the config file has been successfully parsed by this
point, all the necessary data structures have been
created for programming, reading, and verifying the
ISP serial chain. Each of these three functions can now
be accomplished by a single function call (Listing 8).

ISPGDS14 gds.isp “first device
ISP1032 “second device, no file to load
ISP22V10 22v.isp “third device

2-52

In-System Programmability Manual

Software Basics

Listing 6. Excerpt from <serial.cpp>

[void TMainWindow::IDENTIFYCHAINCONFIGURATION (RTMessage){
PC->SetPortBit (ISPEN,0);
if(isp->IDChain()){

MessageBox (HWindow, "The serial chain was read successfully

else { // display the error

CF->Reset();

Listing 7. Excerpt from <serial.cpp>

void TMainWindow::LOADCONFIGURATIONFILE(RTMessage)

CF->Reset(); // reset all the params -- in case we're loading 2nd, 3rd... time
verified=T; // flag for successful parsing of config file
fh=Note: insert the file handle to your config file here
CF->cfh=fh;
do {
rc=CF->ReadLine();
if (strstr(rc,"ERROR")!=NULL){
verified=F;
break; //stop at the first error

}
} while (strstr(rc,"eof")==NULL); // while its not an EOF

if(verified==F){
Note: insert config file syntax error handling code here
CF->Reset();

if({fh!=NULL)&&(verified==T)){

/*
Now there are two lists of devices -- one in CF->Devices, and one in
isp->Devices. Make sure the two lists match up. (CF is the list from
the config file, isp is the list from the scan of the serial chain.)

*/

// first check to see if the number of devices are the same. If not, stop

if (CF->devent != isp ->ChainLength){
Note: insert length mismatch message here
CF->Reset ();
goto lcfreturn;

// now make sure the device lists are the same
for(i=0;i<CF->devcnt;i++){
1f (CF->Devices[i] != isp->Devices[i])({
// mismatch
Note: insert device mismatch message here
CF->Reset();
goto lcfreturn;

Note: insert successful parsing of config file message here

else {
Note: insert unsuccessful parsing of config file message here
CF->Reset();

}
lcfreturn: //return
CF->CloseFile();
if (MsgBuffer != NULL)free(MsgBuffer);
return;

2-53 In-System Programmability Manual

Software Basics

Listing 8. Excerpt from <serial.cpp>

void TMainWindow::PROGRAM(RTMessage)
{

e

PC->SetPortBit (ISPEN,0);

isp->Chain_ Execute("Programming Status",CHAIN_PROGRAM, isp->Devices,CF-
>DeviceISP, isp->ChainLength);

PC->SetPortBit (ISPEN,1);

void TMainWindow: :VERIFY(RTMessage)

PC->SetPortBit (ISPEN,0);

isp->Chain_Execute("Verify Status",CHAIN_VERIFY, isp->Devices,CF->DevicelSP,
isp->ChainLength);

PC->SetPortBit (ISPEN,1);
}

void TMainWindow: :READD(RTMessage)

PC->SetPortBit (ISPEN,0);

isp->Chain_Execute("Read Status",CHAIN_READ, isp->Devices,CF->DeviceISP, isp-
>ChainLength);

PC->SetPortBit (ISPEN,1);
}

2-54 In-System Programmability Manual

Software Basics

ISP Serial Programmer

ISP Serial Programmer is a compiled version of the
example Windows application (serial.cpp) included with
ispCODE. This application not only programs, reads, and
verifies ISP devices using the parallel port of a PC, but will
support ATE programming in a future release. A more
thorough description of the ISP Serial Programmer soft-
ware is included in the "In-System Programming on a PC
or Sun Workstation" section in this manual.

ISP Daisy Chain Download

ISP Daisy Chain Download software supports program-
ming of all Lattice ISP devices in a serial daisy chain
programming configuration in a PC environment. Two
varieties of this software exist: one for a Windows envi-
ronment (called ISP Daisy Chain Download for Windows),
and the other for a DOS environment (called ISP Daisy
Chain Download for DOS). This software is available
from Lattice. A more thorough description of the ISP
Daisy Chain Download software is included in the "In-
System Programming on a PC or Sun Workstation"
section in this manual.

ISP Download for the Sun

ISP Download for the Sun supports programming of
Lattice’s ispLS| devices in a single device programming
configuration on an isp Engineering Kit Model 200 Pro-
grammer. A more thorough description of ISP Download
for the Sun software is included in the "In-System Pro-
gramming on a PC or Sun Workstation" section in this
manual.

ATE Programming Approaches

As ISP programming is controlled by TTL logic signals,
one of the biggest advantages of the ISP feature is being
able to program the devices during board-level testing on
Automatic Test Equipment (ATE). By performing the PLD
device programming and board-level testing in one step,
the manufacturing flow can be streamlined. As a result

of streamlining, costs are reduced and reliability is im-
proved. To support ATE programming, Lattice provides
several software utilities to help convertthe ISP program-
ming signals to various ATE platforms.

There are two types of file formats available to support
ATE programming. One is the test vector format, in which
the programming sequence is converted into the test
vector streams driven from the ATE. ispCODE provides
the test vector conversion utilities for HP, Teradyne, and
GenRad test vector formats. Refer to the "ATE Program-
ming of ISP Devices" section of this manual for more
details. An alternative to test vectors is the tester’s high-
levellanguage syntax. Fortesters which support high-level
language, ISP programming routines can be developed
similarly to the ispCODE routines. An example routine for
the GenRad tester is provided in the "ATE Programming
of ISP Devices" section of this manual.

In order to evaluate the feasibility of ATE programming,
the tester memory requirement, the programming imple-
mentation (test vector vs. high-level language), and the
programming times must be considered. The following
tips should be considered when determining how to
implement ISP programming on ATE.

1. Approximately 200K of memory depth is required to
sequence the ispLS| 1048 programming algorithmin a
vector sequence. High-level language routines may
be an alternative to consider.

2. Programming times for each one of the ISP devices
are provided in the "Hardware Basics" section of this
manual. Consider the largest device when estimating
the minimum ISP programming time.

3.In order to save tester time, multiple ISP devices
should be programmed in parallel. Parallel program-
ming is easily controlled on the tester by controlling
programming signals for each device with indepen-
dent signal drivers. Refer to the "ATE Programming of
ISP Devices" section of this manual.

2-55

In-System Programmability Manual

Notes

2-56 In-System Programmability Manual

Section 1: ISP Overview

Section 2: The Basics of ISP

Section 3: ISP Programming Options

User In-System Programming OPtONSc.ceueveueieeuiieetieeteeetceeeeeeeeeereeeeteseneeseeesesesennnens 3-1
In-System Programming on a PC or Sun Workstationcccceeeeevieiiieveeceeiesseeen e 3-3
In-System Programming from an Embedded Processorcccccvereieiceeninineneccnnineees 3-11
ATE Programming Of ISP DEVICESccceviriiiriiiticeesreeeete ettt eve sttt saesveenes 3-25
Third-Party Programmersccccoeiiiieiiinieiei ettt ens 3-47

Section 4: Application Notes and Article Reprints

Section 5: General Information

Index

User In-System Programming

Options

Guide to This Section

This section covers the full range of ISP programming
options using third-party programmers, IBM compatible

ence guide, Table 1 highlights the sections of Section 3
that are most relevant for a given area of interest. For a
complete understanding of all of the programming op-
tions available for programming ISP devices, please read

PCs, Sun Workstations, embedded processors,and ATE all of Section 3.

(Automatic Test Equipment). Your options for in-system
programming of Lattice ISP devices will vary according to
which environment you are in. To provide a quick refer-

Table 1. Section Reference

If your interest is... ...please refer to this section. Page
Design and Development * In-System Programming on a PC or Sun Workstation 3-3
* In-System Programming from an Embedded Processor 3.11
Manufacturing * ATE Programming of ISP Devices 3-25
* Third-Party Programmers 3.47
Field Upgrades * In-System Programming on a PC or Sun Workstation 3-3
* In-System Programming from an Embedded Processor 3-11

3-1 In-System Programmability Manual

Notes

3-2 In-System Programmability Manual

In-System Programming on
a PC or Sun Workstation

ISP Programming

This section discusses the many ways that you can
program Lattice ISP devices using either an IBM® com-
patible PC or Sun Workstation®. This section is intended
to give you a basic understanding of the range of pro-
gramming tools that Lattice offers to make using Lattice
ISP devices easier.

Selecting a Lattice Programming Tool

Lattice provides a wide variety of programming tools to
meet your ISP programming needs. To select the appro-
priate Lattice programming tool, use the guidelines listed
in Table 1.

Table 1. Selecting the Appropriate Programming Tool

Development

Appropriate Tool
Environment

IBM-PC/Windows
IBM-PC/DOS

ISP Daisy Chain Download for Windows
ISP Daisy Chain Download for DOS
ISP Download for the Sun

Sun Workstation

ISP Daisy Chain Download for Windows

ISP Daisy Chain Download for Windows allows you to
program one or more ISP devices connected in a daisy
chain using an IBM PC. ISP Daisy Chain Download for
Windows requires the following:

* A JEDEC file for each device you want to program

* ispDOWNLOAD cable to attach to the parallel port of
an IBM PC

* Microsoft Windows® 3.1

* Target hardware (circuit board) with ISP interface
(see Figure 1) or the Lattice isp Engineering Kit
Model 100

Figure 1. Five-Wire ISP Interface

SDO

SDI 5-wire ISP
MODE Programming
SCLK Interface

iSpEN

Custom ispCODE

Programming and Verifying

This section presents an example of ISP programming
and verification using each of the Lattice ISP program-
ming tools. ltis not intended as a complete reference for
using the Lattice programming tools. Instead, it provides
a basic overview of each of the Lattice ISP programming
products.

Examples are provided for the Lattice products listed
below. The complete reference manual for each of these
productsis listed in parentheses under the product name.
Please refer to these documents for detailed information
about using these products.

* ISP Daisy Chain Download for Windows -
(ISP Daisy Chain Download Reference Manual v. 1.00)

* |SP Daisy Chain Download for DOS -

(ISP Daisy Chain Download Reference Manual v. 1.00)
* ISP Download for the Sun -

(pDS+ Software Documentation v. 2.00)
* ispCODE -

(ispCODE Programmer's Reference Manual 1994)

—

— J

Download Process

Follow the steps below to download to your ISP daisy
chain.

1. Invoke ISP Daisy Chain Download for Windows.
2. Generate a new configuration file.

3. Verify the configuration file.

4. Program the chain.

These steps are explained in more detail next.

Note: The configuration file, design.DLD, can be used in
the DOS or Windows environment.

In-System Programmability Manual

In-System Programming on a PC or Sun Workstation

Invoking ISP Daisy Chain Download for
Windows

To invoke ISP Daisy Chain Download for Windows,
double click the ISP Daisy Chain Download for Windows
icon as shown in Figure 2. The main window appears
(Figure 3).

Figure 2. ISP Daisy Chain Download for Windows

IDCD Readme

Figure 3. The ISP Daisy Chain Download for Windows
Main Window

ISP Daisy Chain Download Version 1.00

Messages

Generating a Configuration File

ISP Daisy Chain Download for Windows uses a configu-
ration file to define the following information about your
chain:

* The position and type of each device

* What operation to perform (read, program, verify,
etc.) on each device

If the PC is connected to the target hardware or ISP
Engineering Kit Model 100, the easiest approach to
creating a configuration file is to use the Configuration
= Scan Board command. This creates a basic configu-
ration file which contains all the devices in the chain, but
no information about what operation to perform or what
JEDEC files to use.

To create the configuration file, select the
Configuration Scan Board Option (Figure 4).

Figure 4. Selecting Configuration= Scan Board

sy Chain Download Version 1.00

XE\PARKER.DLD

Operation

Index Device File Status

[J[i02«_]8] [Biswse] m:xavcr00WNLOADIEXEVI 02 | [Verify B[] %
E Program & Verify g I
ER | M:AKAYC\DOWNLOADIEXE\103
ERITEET & | MAKAYC\DOWNLOADIEXEVT 03

(] e 13
(o

<]

6 | M:AKAYCA\DOWNLOAD\EXE104

Read 8 Save [¥][WA | §

M:KAYCIDOWNLOADIEXEVAD | [Program & Verity [§] [WA |

Mcssages

The next step is to select a JEDEC file for each device in
the chain that you want to program. You can do this by
either entering the file name directly or using the browse
button (Figure 5).

Figure 5. Selecting a JEDEC File for Each Device

ISP Download

N -
[XI3W Configuration Com Heip .

New... Ctrl+N i

Open Ctl+0

Save Ctrl+S

Save As. File Operation Status
P MAKAYC\DOWNLOADIEXEVDE | [Program & Verify [#]
l_Z_J [1024 | [Program & Vemylﬁ

ER Program & Verity [#] [NA

Program & Verify g

[Scan Board: start.
[Scan Board: successful.

34

In-System Programmability Manual

ln-System Programming on a PC or Sun Workstation

Verifying the Conflguratlon File

Once you have created a conﬁguration file, verify that the
configuration file is valid b by using the Command =

Check Configuration Set option (Figure 6).
Figure 6. Verifying the Configuration File

hain Down I Version 100

o TR i

W

Status

)

Operation

ADREXEN 02 | [Verity

Messages

If your configuration file passes this test, then you can
proceed to programming the chain.

Programming or Verifying the Chain

Once you have a vaiid configuration fiie, you can perform
operations on the chain. To do this, select the Command
= Run Operation from the main menu (Figure 7).

Figure 7. Performing Operations on the Chain

15 Daisy ¢ hain Download
Command

{ Check Configuration Setup

Hun Operation

Operation Status

Messages

Scan Board: start.
Scan Board: successful.

ISP Daisy Chain Download for DOS

Lattice provides a DOS version of the download software
for programming an ISP daisy chain. ISP Daisy Chain
Download for DOS requires the following:

* A JEDEC file for each device you want to program

* ispDOWNLOAD cable to attach to the parallel port of
aPC

» Target hardware (circuit board) with an ISP interface
(see Figure 1) or the Lattice isp Engineering Kit
Model 100

Download Process

The following is a step by step guide to downloading to an
ISP daisy chain using ISP Daisy Chain Download for
DOS.

1. Invoke ISP Daisy Chain Download for DOS.
2. Create a download configuration file.

3. Verify the download.

4. Program or Verify the chain.

These steps are explained in more detail in the following
sections.

Invoking ISP Daisy Chain Download for DOS

From the DOS command line, enter ddownld. The ISP
Daisy Chain Download for DOS main window appears
(Figure 8).

Note: It is preferable to invoke ISP Daisy Chain Down-
load for DOS from the DOS prompt and not from Windows
DOS. Invoking the program from Windows DOS can
cause timing variations.

3-5 In-System Programmability Manual

In-System Programming on a PC or Sun Workstation

Figure 8. ISP Daisy Chain Download for DOS Main This creates a basic configuration file with the name you

Window

r |SP Daisy Chain Download 1.00]

. Open Configuration
3. Scan Board Configuration
4. Verify Configuration
5. Download
6. Quit

rPress T# and ‘J to choose or Esc to Quit ‘]
L]

(Message Display Area)

Creating a Configuration File

ISP Daisy Chain Download for DOS uses a configuration
file to define the following information about your chain:

* The position and type of each device

* What operation to perform (read, program, verify,
etc.) on each device

If you have the PC connected to your target hardware, the
easiest approach to creating a configuration file is to use
the ISP Daisy Chain Download for DOS Scan Board
Configuration command. This creates a basic configu-
ration file which contains all the devices in the chain, but
no information on what operation to perform or what
JEDEC files to use.

To create the configuration file, select the Scan Board
Configuration command (Figure 9).

Figure 9. The Scan Board Configuration Command

l ISP Daisy Chain Downioad 1.00

1. Assign Port Number
2. On Configu tlon _

4. Check onﬂguratlon etup
5. Download
6. Quit

uress f¢ and ‘_] to choose or Esc to Quit

[DLD file to save: l

specify. Now use a text editor to enter the operations and
JEDEC files needed by each device (Figure 10). Table 2
lists the operation codes that are entered in the second
column of the configuration file.

Figure 10. Sample .DLD File

Table 2. Configuration File Operation Codes

Code | Operation

pv program & verify
v verify

c checksum

rs read & save

e erase

nop no operation

Verifying the Configuration File

As creating the configuration file is a manual process, it
is important that you verify the file before proceeding. To
do this, select the Check Configuration Setup com-
mand from the ISP Daisy Chain Download for DOS menu
(Figure 11). This ensures that your configuration file is
valid.

Figure 11. Verifying the Configuration File

ISP Daisy Chain Download 1.00 j

[

1. Assign Port Number
2. Open Configuration
3. Scan Board Configuration i

5. Download'
6. Quit

I Press f¢ and ‘_J to choose or Esc to Quit ‘

t Check Configuration Setup Done ‘I

3-6

In-System Programmability Manual

In-System Programming on a PC or Sun Workstation

Programming or Verifying the Chain

Once the configuration file has been verified, you can
download to the chain. Select the Downioad option from
the ISP Daisy Chain Download for DOS main menu.
When the download option menu is displayed, choose
the Daisy Chain Configuration option which programs

one or more devices in the daisy chain (Figure 12).

Note: If you are programming a single device and do not
wish to create a configuration file, choose option 1 in
Figure 12, Single Device.

Figure 12. Downloading the Chain

MS DOS Prompt

Once you have selected the Daisy Chain configuration
option, the commands you specified in the configuration
file will be performed. For example, if the configuration
file calls for Program & Verify, the Program and Verify
functions will be performed.

ISP Download for the Sun

You can download and program an ISP device from the
Sun Workstation using the Lattice ISP Download for the
Sun utility. This utility requires the following:

* A JEDEC file for each device you want to program
* isp Engineering Kit Model 200

This configuration supports in-system programming of a
single ISP device either in the isp Engineering Kit socket

adapter or directly on the circuit board via a download
cable.

Download Process

To perform a download using ISP Download for the Sun,
foiiow the steps beiow:

1. Connect the Model 200 to your Sun Workstation.
2. Invoke the ISP Download utility.

3. Select your target hardware.

3. Choose a JEDEC file to download.

4. Program the Device.

These steps are discussed in more detail in the following
sections.

Invoking ISP Download for the Sun

To invoke ISP Download for the Sun, type DOWNLOAD
at the UNIX prompt (or, choose Lattice = Download
from the Lattice menu in pDS+ Viewlogic). The main
window appears (Figure 13).

Figure 13. The ISP Download for the Sun Main
Window

® Lattice isp Download Version 1.01
Lattice s))
Command
CExecuts) .
Device Status File Status Target
Device Type: File Type:
Check Sum: Check Sum:
|Security Fuse: |Security Fuse: Reep

Selecting the Target Hardware

Select your target hardware by clicking on the Target
window in the lower right hand corner of the ISP Down-
load for the Sun main window (Figure 14). Choose
socket if you are using the isp Engineering Kit Model
200, or cable if your are downloading directly to the board
using the download cable. If you are downloading via the
cable, connect the cable from the Sun, through the isp
Engineering Kit, to the circuit board.

37 In-System Programmability Manual

In-System Programming on a PC or Sun Workstation

Figure 14. Selecting the Target Hardware

Figure 16. The Command Selection Menu

Lattice Isp Download Version 1.01

(_Port Setup) (_Quit)

=
Lattice

Command
Program [(_Program) [recute)

verify
Device Status
Save

)

0}

:i Lattice isp Download Version 1.01
ﬁm Port Setup) Quit)
Command
Program Execute) File a
L] —
=
D
v
J,
Device Status File Status Target
Device Type : File Type : socket |((socket
Check Sum : Check Sum : cable
Security Fuse : Security Fuse : Beep F

Device Status File Status Target
Device Type : Flle Type :

Check Sum:
Security Fuse :

Check Sum :
Security Fuse :

Choosing a JEDEC file

Once you have configured the ISP Download for the Sun
program, choose a JEDEC file for programming the
device. Select the File button from the main window. The
File Selection dialog appears (Figure 15).

Figure 15. File Selection Dialog

o
Lattice isp Download Version 1.01
(“Port Setup) Cauit)
[File
Col
S Enter File Name: test_
demo24 jed
L =] =
e | ./ 0 g
oo | test_2 k_1 for write...
Ri iy . v
oq | demoisjed {3
0
demo32.jed 3
demo48.jed

0

AN
Current Directory:
Lusers/kayc/dl_sun/bin

heck Sum: 640C
Security Fuse: disabled

Target

Check Sum:
Security Fuse:

Choose a JEDEC file from this dialog box and click the
OK button.

Programming the Device

Once the JEDEC file has been chosen, you can choose
to program or verify the ISP device. To select the program
or verify command, place the cursor in the Command box

and click the left mouse button. The Command Selection
G CHCKINE iI€1TMOUSE DUTICN. 1 ne LommanaG S&ieClion

menu appears (Figure 16).

To program the device, select the Program option. To
verify the device, select the Verify option. After you have
chosen an option, click the Execute button.

ispCODE

Lattice ispCODE contains C++ routines for interfacing with
Lattice ISP devices. These routines can be customized to
meet your specific hardware needs. Included with this
source code are a project file (SERIAL.PRJ) and all of the
files required by the Borland C++ compiler to compile a
version of the ispCODE which has a user interface. This
user interface is intended to demonstrate how ispCODE
can be used in your custom application. When you compile
the ispCODE using the project file SERIAL.PRJ, the execut-
able (SERIAL.EXE) is created which you can invoke while
running windows. This ispCODE demonstration will be
referred to as the ISP Serial Programmer throughout this
section.

To perform a download or verification using the ispCODE
ISP Serial Programmer, follow the steps below.

1. Connect a download cable, such as the Lattice
ispDOWNLOAD cable, orisp Engineering Kit Model 100
to your PC parallel port.

2. Invoke the ISP Serial Programmer by double clicking the
ISP Serial Programmericon, or by running SERIAL.EXE.

3. Perform a scan of the attached chain.
4. Load a configuration file.
5. Program or verify the chain.

These options are discussed in more detail in the following
sections.

In-System Programmability Manual

In-System Programming on a PC or Sun Workstation

Invoklng the Serial Programmer

The ISP Serial Programmer is invoked by either double

C!IC!‘(I-"-" the ISP Serial Programmer icon, or by executing

SERIAL.EXE from the Windows Program Manager. Once
invoked, the ISP Serial Programmer displays the main
menu (Figure 17).

Figure 17. The ISP Serial Programmer Main Menu

___Lattice ISP Serial Programmer — Version 2.0 lgj‘&'
Configure Script Help |
Status Window

Scanning the Chain

First, perform a scan of the attached chain by selecting
Configure = Identify Chain Configuration from the
main window, or by pressing F1. This identifies the
devices attached to the PC’s parallel port. The device
names appear in the status window (Figure 18).

Figure 18. Scanning the Attached Chain

Help

Script
PC Parallel Port »
Mode Selection »
Status Window

Creating and Loading a Configuration File

The ISP Serial Programmer uses a configuration file to
define what devices are in the chain, and what files to
load into each device. This is an ASCI! text file that you
can create with any text editor. Whenever you scan the
chain, an empty configuration file called “template.cfg” is
created. You can then edit this file (by selecting Config-
ure = Edit Configuration File or pressing F3), and add
the JEDEC file names next to the devices you want to
program. Save this file under a new name, so it is not
overwritten the next time you scan the chain.

You must load a configuration file before any other
operation is performed. Load the configuration file by
selecting Configure = Load Configuration File, or by
pressing F2. The software verifies the configuration file,
and enables the program, verify, and read options from
the main menu (Figure 19).

Figure 19. Loading the Configuration File

onfigure Script Help

v ldentify Chain Configuration F1

Edit Configuration File F3

PC Parallel Port »
Mode Selection 4

Status Window

Scanning serial chain
ISP1032..1SP22V10..1ISP1016..1ISPGDS22.. B
...5can successful S

3-9

In-System Programmability Manual

In-System Programming on a PC or Sun Workstation

Programming or Verifying the Chain

Once the configuration file has been successfully loaded,
you can program or verify the serial chain. Note in the
figure below that the Program, Verify, and Read options
are now available, indicating the successful loading of

tha annfinuiratinn fila Ta nroaram tha davicag calant tha
i€ CoONNguiaudln e, 1 C prograim i€ GeVites, SCieliine

Program option from the main window. To verify the
devices, select Verify from the main window (Figure 20).

Figure 20. Verifying the Devices

F. | attice ISP Serial Programmer Version 2.0

Customization

As Lattice makes all the source code available for the ISP
Serial Programmer, you can modify the application to
meet your specific needs. However, modifying the source
code may not be necessary. The ISP Serial Programmer
provides a script option which allows you to record a
series of commands for the programmer to execute. One
of these commands is an execute command, which
allows you to run another Windows or DOS program as
part of the script. This may be sufficient for your
customization needs. Refer to the on-line help for more
information.

onflguve Program Verify Read Script Help

Another reason for using ispCODE may be to add field
upgrade capability to your application. If you are using
ISP with an embedded system, you may want to be able
toload new versions of ISP programming information into
Status Window your system via a floppy or serial link, such as a modem.
ﬁ;c;rl']‘;;?.lssg'z?vﬁhﬂ’erPlI]IS..ISPGDSZZ,. By using ISpCODE in yoyr appl!cat|on, you can uPdate
...Scan successful your system far more easily than if you had to remove and

Loading config file:f-\isplsitseriaidemoyjim.clg reprogram logic manually.
3-10 In-System Programmability Manual

In-System Programming
from an Embedded Processor

Overview

This section describes how to program Lattice ISP de-
vices using an embedded processor. The first section
shows the use of a microprocessor to control ISP, includ-
ing the construction of a simple ISP port. The second
section shows an 8051 microcontroller used as an ISP
controller and covers the procedures and assembly code
required for processor-based ISP programming. The
8051 assembly code is written in a modular format. A
higher level of routines provides the user with device-
level functions such as Read ID, Bulk Erase, Program,
and Verify. In an attempt to provide routines that can be
used across all ISP device families, specific routines are
written for the ispGDS22 devices. Only slight modifica-
tions to the basic functions used across these devices
are required to adapt the routines to program any other
ISP device.

Programming with a Microprocessor

There are several ways to define the ISP programming
hardware for microprocessor-based in-system program-
ming, depending on the type of storage device used and
how the ISP devices are to be programmed. Since an
additional step is necessary to convert a JEDEC file into
an ispSTREAM, the fuse map information can be stored
in a JEDEC standard fuse map file, simplifying design

Figure 1. Microprocessor-Based ISP

changes. Or, since aJEDEC standard fuse map file takes
an order of magnitude more memory space to store the
fuse map information than an ispSTREAM, the ISP
programming routines can be stored in an ispSTREAM.
This section presents a hardware configuration in which
the fuse map information is stored in a JEDEC standard
fuse map file.

The hardware configuration shown in Figure 1 uses an 8-
bit wide EPROM to store the JEDEC fuse map file and
object code, which is created from ispCODE C++ source
code. (See the "Software Basics" section in this manual
for a complete description of ispCODE). The patterns are
then read from the EPROM by the microprocessor and
converted into serial stream format. The ISP signals are
driven from the decoder and I/O port which decodes the
proper ISP read/write address space (similar to the I/O
port definition of the previous setup). Similarly, fuse map
memory addresses must be defined to be properly read
from the EPROM.

The I/O port can be implemented using a dedicated port
chip or a PLD. In the case of a PLD implementation, the
device must have five pins for the ISP port, five pins for
the data port, one pin each for AS and R/W, and enough
additional pins to provide address inputs to the decoder.
If a partial rather than full decode can be used, the
number of address pins can be reduced. For example, for

R 1P pddress

as —— Decode

> 1/0 Port

b Register | | ="
(Bidirect-

ional) :: s‘ﬁ‘f
0004 ¢ > 1% soi
[@+— SDO
.v'l
Control Signals (RMW,AS etc..) o | Decoder
> % |
— > VO Port
| Logic
Micro- g Igg‘:‘
processor
IspLS! Device
L PROM L
or 11
< EPROM
SDO2
ADDRESS o | SDI3
9> ispLSI Device
L=
Lg—S003 |
3-11 In-System Programmability Manual

In-System Programming from an

Embedded Processor

a processor with a 16-bit I/O space, if a block of 256
locations can be allocated to the ISP port, only the upper
eight addresses (A8-A15) need to be decoded and the
function can fit into a 24-pin low-density GAL such as the
GAL 20RA10. If a full decode in needed, a high-density
PLD with ample pins such as Lattice's ispLSI or pLSI
2032 or 1016 should be used.

Most hardware timing requirements can be satisfied by
the microprocessor software instruction execution time,
Only the program, verify, and bulk erase times require the
software to have wait cycles. Many microprocessorboards
will not have a timer chip to time the wait states. However,
the instruction execution times can typically be estimated
accurately. Therefore, timing loops must be inserted into
the instructions to control critical hardware timing.

Within ispCODE source code, before the object code is
created, address spaces for the ISP read/write locations
and the EPROM read locations must be defined. The
storage space requirement for the object code must also
be determined if the code is going to reside in the storage
device. Based on the ispCODE functions, the object code
which is capable of executing basic ISP functions typi-
cally does not exceed 8K bytes of memory. This memory
requirement is directly proportional to the number of ISP
and user interface functions.

Programming with a Microcontroller

The advantage of using a microcontroller-based ISP
interface is that the ports are integrated with the proces-
sor. As shownin Figure 2, the interface to the ISP devices
is accomplished through 1/0 port 1. RAM and EPROM

Figure 2. Microcontroller Block Diagram

access is also shown in the block diagram through the
use of I/O port 0 and I/0 port 2. These specific connec-
tions may be changed according to the user’s application.
Direct connections are made from the port to the ISP pins
of the device. The pinout used on 1/O port 1 is listed
below:

SDI P1.0
SCLK Pl.1
MODE Pl.2
SDO P1.3

The address and data to the RAM and EPROM are
multiplexed through a 74LS373 latch and the control
signals are routed through the 74LS138 decoder.

The timing requirements for ISP programming are with
respect to the SCLK signal. To shift between states, the
SDI and MODE control signals are set to the required
values for a state transition and SCLK is applied. In this
manner, the set up times are easily met and interrupts
can occur at any time during the application of ISP
signals.

Software Overview

The main function of the embedded processor assembly
software routines is to drive the ISP programming state
machine (Figure 3), while ensuring that all programming
timing requirements are met. The programming pulse
width is controlled by a counter delay. The resulting pulse
width of the counter depends on the clock frequency of
the microcontroller and the bit width of the counter. The
values used here are based on a clock rate of 122 MHz and
the use of the default state of the counter which is 13 bits.

RAM EPROM
Data Data
Addr Addr
— Control

*

8051 74LS
373
Port 0
Port2
74LS
—— Port 1 138
Control I

P ISP Programming Signals

3-12

In-System Programmability Manual

In-System Programming from an

Embedded Processor
Figure 3. ISP Programming State Machine
Load Shift Load Execute
ID ID Command Command

Idle State
(Normal
Operation)

Note:
Control signals: MODE, SDI

Software resources, such as internal registers, are self-
contained within the routines. These resources are freed
after the routines have been properly executed. The only
resources that have to be dedicated to ISP in this ex-
ample are the 1/O port signals that are used to drive the
ISP programming signals. The user has a choice to free
the I/O port resources if the I/O port signals are multi-
plexed. The ORG statement indicates the beginning
address of the subroutine and is used to place the
assembly routines within the main code. If the routine
codes are intended for a user application using the same
internal register resources, the registers may be pushed
onto a stack to preserve them. Upon completion of the
subroutine, they are popped off the stack so that there is
no interference with the calling assembly program.

JEDEC Map Creation and Storage

The JEDEC pattern is stored as part of the 8051 execut-
able code. ltis differentiated from the assembly listing by
an assembler directive which flags the program space to
be used as data bytes. The JEDEC map is placed at the
bottom of the assembly file, as memory, and referenced
with a label to mark its position. Assignments are auto-
matically adjusted by the assembler. Placing the JEDEC
map at the bottom also simplifies using sequential JE-
DEC files for multiple device programming. This is
desirable for PC boards intended for multiple function
programming during manufacturing or in the field.

Shift State
(Load
Commands)

Execute State
(Execute
Command)

The JEDEC Fuse Map Shift Procedures

In the source listing section of this document, the JEDEC
fuse map for the ispGDS22 is listed as a sequential order
of bytes. Each byte is broken into a bit sequence and
written out serially to a port pin. Another port pin is then
used as a clock driver for clocking in the serial data
information. The JEDEC file is stored so that it is read out
sequentially from top to bottom. In the case of ispGDS
and ispGAL devices, each line of the JEDEC file contains
both the data and address information and can be pro-
grammed as a single stand-alone line. However, in the
case of ispLS| devices, the address shift routine must be
executed as a separate routine prior to shifting in the data
bits.

When shifting the JEDEC data from program memory, a
shift left operation is used on each byte to shift out the
data to the I/O port. This means that a reverse bit order
is stored in the bytes. If the order of the bits is to be
maintained, then a shift right instruction may be used to
shift the bits out of each of the bytes. The stored ispGDS
JEDEC file is in the same format as Figure 4. Bits in the
JEDEC file are shifted LSB first. This means that the five
“1s” will be shifted out, starting at the right hand side of the
table. Note that this method of shifting out the bits
requires reverse ordered bytes of information.

3-13

In-System Programmability Manual

In-System Programming from an

Embedded Processor
Figure 4. ispGDS JEDEC Fuse Map
ispStream MSB LSB ispStream
bit#7 - » [Device ID | « — bit#0
Address bits
“ | - Dummy bits
v vy < 11 bits of Matrix Data > ispStream
00] 00001 1]JEDEC fuses: 10.................. 0 11111« bit#8
00| 0001 |11|JEDEC fuses: 21..... NREIRRRRRE.
00| 0010 (11 [JEDEC fuses: 32.................. 22 |11
00] 0011 [11{JEDEC fuses: 43.................. 33 |1
10010100 [11|JEDEC fuses: 54... .44 [1111
000101 |11 |JEDEC fuses: 65... .55 | 11111
00] 0110 [11[JEDEC fuses: 76... .66 | 11111
00[0111 11 |[JEDEC fuses: 87... .77 | 1
00[1000 |11 |JEDEC fuses: 98... ..88 [11111
00/ 1001 |11 |JEDEC fuses: 109.. .99 | 11111
00/ 1010 [11|JEDEC fuses: 120................ 110 [11111
le 16 bits of UES data »
00/ 1011 |11]JEDEC fuses: 136................. 121
}60"71605+i1"}d'é05c fUSES: 152 00ueeureainnnss 137 (
- 22 bits of Architecture data »
01 JEDEC fuses: 174
ispStream |10 JEQEQ;',‘!?‘*i?Z‘,é,G .
bit # 392 > |11 JEDEC fuses: 218

ISP Programming Routines

The programming routines were constructed in a modu-
larformatthrough the use of subroutines. Each subroutine
is constructed so that it controls the appropriate state
transitions as shown in Figure 3. The routines can be
easily traced keeping in mind the ISP states and state
transitions. The names of the subroutines follow the
names of the state machine closely for ease of readability
and comprehension.

Programming Sequence

The code is broken into three major blocks. Each is
executed in sequence. The first block is that of device
identification. In this section, note that the identification of
the device is hard coded. The next major block performs
a bulk erase on the device. The last block loads the
JEDEC map into the device.

Prior to these blocks is the configuration area of the 8051
microcontroller. This is standard configuration informa-
tion that is generally present at the top of any 8051
microcontroller assembler file. Typical information con-
tained in the configuration area includes port addresses
and interrupt type of addresses.

The identification of the device is marked in the assem-
bler code by the label “READID.” The completion of this
section is marked by the label “END_READID:.”

The first step in reading the ID is to establish the starting
state from which the action is to take place. Normally this
is done by moving to the first state of the state machine,
which is the idle state (Listing 1).

3-14

In-System Programmability Manual

In-System Programming from an
Embedded Processor

Listing 1. Embedded Processor Programming Algorithm
Follow the steps below to read the device identification:

- Move to the IDLESTATE.

- In the IDLESTATE execute the LOAD ID Command.

- Enable the shifting of the IDENTIFICATION of the device.

- Set up of the registers for a loop counter and for storing the device ID.

- Clock each bit of the device ID with an SCLK signal and do a shift store of the
information.

- Compare the ID that was shifted in with the ID of an ispGDS22 and continue if
the identification matches. Otherwise, enter into an endless loop with no other
actions.

Follow the steps below to bulk erase the part prior to programming:

- From the IDLESTATE, the subroutine BULK_ERASE is called. It in turn performs the
following actions:

-It places the state machine into the IDLESTATE

-Changes state to the SHIFTSTATE , getting the ISP state machine ready for
shifting in a command

-Shifts in the Bulk erase command

-Changes state to the EXECUTE STATE

-Calls EXECUTE COMMAND once and waits 200 milliseconds

-Returns to the point from where the subroutine call was made (Note that at
this point Bulk erasing of the part is recommended so the device will be pro-
grammed from a known starting point)

Follow the steps below to program the device:

- Place the device in the IDLESTATE
- Change state to the SHIFTSTATE

- Shift in the SHIFTDATA command

- Move to the EXECUTE_STATE

- Execute the command

The state machine is now ready for shifting in each line of the JEDEC file:

- Prepare the registers for the looping that is required for the shifting in of
the bytes and bits within each byte of information
- Load each of the bytes in its turn in a shift register and shift out.

Once a complete line has been shifted out, call the subroutine PROGRAM which does the following:

- Calls the subroutine SHIFTSTATE

- Moves from the EXECUTE_STATE to the SHIFT STATE

- Calls the subroutine PROGRAM CMD which shifts in the program command and returns
to the point where it was called

- Moves to the EXECUTE_STATE

- EXECUTEs the command

- Delays the movement out of the execute above to allow for the programming of the
line of the JEDEC file

- Shifts to the SHIFTSTATE state

- Calls the SHIFTSTATE subroutine which performs the functions as noted above

- Moves to the EXECUTE_STATE

3-15 In-System Programmability Manual

In-System Programming from an

Embedded Processor

- EXECUTES the command
- Returns to the point from where the PROGRAM subroutine was called

After completion of the PROGRAM subroutine call, go back to the top of the loop that loads in another row of the
JEDEC file and repeat the procedure until all of the rows and bits have been loaded in. On completion of programming
the device, continue with execution of the user code or go into a loop which tells the user that the programming of
the device has been completed (such as the indefinite subroutine call to PROG_COMP which flashes an LED).

Listing 2 is the assembler listing that follows the algorithm in Listing 1.

Listing 2. Assembler Listing

; SMOD51

$TITLE(ISP PROGRAMMER FOR 8051)
$PAGEWIDTH(132)

$DEBUG
SOBJECT
$NOPAGING

Variable declarations

PO DATA 080H ;PORT 0
P1 DATA 090H ;PORT 1
P2 DATA 0AOH ; PORT 2
P3 DATA 0BOH ;PORT 3
SP DATA 081H ; STACK POINTER
DPL DATA 082H ;DATA POINTER - LOW BYTE
DPH DATA 083H ;DATA POINTER - HIGH BYTE
PCON DATA 087H ; POWER CONTROL
TCON DATA 088H ; TIMER CONTROL
TMOD DATA 089H ; TIMER MODE
TLO DATA 08AH ;TIMER 0 - LOW BYTE
TL1 DATA 08BH ;TIMER 1 - LOW BYTE
THO DATA 08CH ;TIMER 0 - HIGH BYTE
TH1 DATA 08DH ;TIMER 1 - HIGH BYTE
IE DATA 0A8H ; INTERRUPT ENABLE
IP DATA 0B8H ; INTERRUPT PRIORITY
ACC DATA OEOH ; ACCUMULATOR
B DATA OF0H ;MULTIPLICATION REGISTER
ITO BIT 088H ;TCON.0 - EXT. INTERRUPT 0 TYPE
IEO BIT 089H ;TCON.1 - EXT. INTERRUPT 0 EDGE FLAG
IT1 BIT 08AH ;TCON.2 - EXT. INTERRUPT 1 TYPE
IE1 BIT 08BH ;TCON.3 - EXT. INTERRUPT 1 EDGE FLAG
TRO BIT 08CH ;TCON.4 - TIMER 0 ON/OFF CONTROL
TFO BIT 08DH ;TCON.5 - TIMER 0 OVERFLOW FLAG
TR1 BIT 08EH ;TCON.6 - TIMER 1 ON/OFF CONTROL
TF1 BIT 08FH ;TCON.7 - TIMER 1 OVERFLOW FLAG
RI BIT 098H ;SCON.0 - RECEIVE INTERRUPT FLAG
TI BIT 099H ;SCON.1 - TRANSMIT INTERRUPT FLAG
RB8 BIT 09AH ;SCON.2 - RECEIVE BIT 8
3-16 In-System Programmability Manual

In-System Programming from an

Embedded Processor

TB8
REN
SM2
SM1
SMO

EX0
ETO
EX1
ET1
ES

SCON
SBUF

EA
RXD
TXD
INTO
INT1
TO
T1

RD
PX0
PTO
PX1
PT1
PS

RS1
FO
AC
CY
SDI
SCLK
MODE
SDO
ESC

BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT

DATA
DATA

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
EQU
EQU
EQU
EQU
EQU

09BH
09CH
09DH
09EH
09FH

O0A8H
0A9H
0AAH
0ABH
OACH

098H
099H

OAFH
0BOH
0B1H
0B2H
0B3H
0B4H
0B5H
0B6H
0B7H
0B8H
0B9H
0BAH
0BBH
0BCH

0D4H
0D5H
0D6H
0D7H
P1.0
P1.1
Pl.2
P1.3
1BH

;SCON. 3
;SCON. 4
;SCON.5
; SCON. 6
;SCON.7

; SERIAL
; SERIAL

;IE.7 -

;escape

- TRANSMIT BIT 8
- RECEIVE ENABLE
- SERIAL MODE CONTROL BIT 2
- SERIAL MODE CONTROL BIT 1
- SERIAL MODE CONTROL BIT 0

EXTERNAL INTERRUPT 0 ENABLE
TIMER 0 INTERRUPT ENABLE
EXTERNAL INTERRUPT 1 ENABLE
TIMER 1 INTERRUPT ENABLE
SERIAL PORT INTERRUPT ENABLE

PORT CONTROL
PORT BUFFER

GLOBAL INTERRUPT ENABLE
SERIAL PORT RECEIVE INPUT
SERIAL PORT TRANSMIT OUTPUT
EXTERNAL INTERRUPT 0 INPUT
EXTERNAL INTERRUPT 1 INPUT
TIMER 0 COUNT INPUT

TIMER 1 COUNT INPUT
WRITE CONTROL FOR EXT. MEMORY
READ CONTROL FOR EXT. MEMORY
EXTERNAL INTERRUPT 0 PRIORITY
TIMER 0 PRIORITY

EXTERNAL INTERRUPT 1 PRIORITY
TIMER 1 PRIORITY

SERIAL PORT PRIORITY

REGISTER BANK SELECT 1
FLAG 0

AUXILIARY CARRY FLAG
CARRY FLAG

character

;NOTE THAT THE JEDEC_TABLE IS LOCATED AT THE BOTTOM OF THE FILE.

j——END OF VARIABLES

ORG 2100H
AJMP BEGIN
ORG 2103H
SETB B.0
RETI

;START OF PROGRAM

; EXTERNAL INTERUPT
;SET FLAG TO PROGRAM

3-17

In-System Programmability Manual

In-System Programming from an

BEGIN:

Embedded Processor
===== INTERRUPT SERVICE ROUTINE FOR TIMER(O INTERRUPT ==========

ORG 210BH
SETB TFO ; TIMER HAS OVERFLOW
RETI

SETB EA ;ENABLE ALL INTERRUPTS, GLOBAL
SETB EXO0 ;ENABLE INTERRUPT 0
MOV B, 00H
AJMP BLINK ;OUT OF RESET JUMP TO

; THE TABLE START
SETB Pl1.7

BLINK:

START:

JB B.0,START
ACALL DELAY200
ACALL DELAY200
CLR P1.7

ACALL DELAY200
AJMP BLINK

 #HH AR R HAAAAHA READ 1D OF THE DEVICE ######A#H#HRHHHHHHHHHHRRAAY

READID:

LABEL:

HI_BIT:
OVER1:

NO_1ID:

CONT1:

ACALL IDLESTATE ;THESE 2 FUNCTION CALLS
ACALL LOAD_1ID sACCOMPLISH THE SAME THING
ACALL SHIFT_EN ;CLEARING THE MODE BIT SO THAT

; SHIFTING CAN TAKE PLACE

MOV RO, #07H ; LOOP COUNTER SET UP FOR 7 COUNT
MOV R1,#00H ; TEMP REG FOR ID BYTE

SETB P1.5 ; LED INDICATOR FOR ID OFF

MOV A,R1

JB P1.3,HI_BIT ; JUMP IF ITS A HI ON SDIN (P1.3)
CLR ACC.7 ; IF NOT ITS A LOW, PUT A LOW AT MSB

AJMP OVER1

SETB ACC.7 IT IS A HIGH, PUT A HIGH AT MSB

RR A ; SHIFT RIGHT

MoV R1,ACC ; MOVE IT TO TEMP REG Rl

ACALL SCLOCK ; CLOCK AND GET READY FOR NEXT BIT
DJINZ RO, LABEL ; GET NEXT VALUE, DO THIS 7 TIMES
CJINE A,#072H,NO_ID ; 72H IS THE DEVICE ID FOR ispGDS22
CLR P1.5 ; SET P1.5 IF THE CORRECT ID

AJMP CONT1

SETB P1.5 ; LED LIGHTS ON THE BOARD

AJMP NO_ID ;7 SO THAT SIGNAL INTEGRITY CHECKS
CAN BE MADE.

NOP

3-18 In-System Programmability Manual

In-System Programming from an
Embedded Processor

END_READ ID

TO THIS POINT THE DEVICE ID HAS BEEN READ
AND GENERAL BULK ERASE AND PROGRAMMING IS
TO TAKE PLACE

e e e

ACALL BULK_ERASE

AT THIS POINT HAVE READ ID AND BULK ERASED THE PART

~e

SET UP FOR JEDEC PROGRAMMING SEQUENCE OF THE DEVICE
ACALL IDLESTATE

~e

ACALL SHIFTSTATE ;MOVED FROM EXECUTE STATE TO
; LOAD COMMAND STATE

ACALL SHFTDATA_CMD ; SETUP FOR PLACING DATA
; INTO THE SHIFT COMMAND

ACALL EXECUTE_STATE
ACALL EXECUTE ; EXECUTE SHIFT CMD

;NOW DEVICE IS READY FOR THE LOADING OF THE JEDEC PATTERN
;LOADING OF THE JEDEC PATTERN IS DONE IN THE EXECUTE STATE AFTER THE
; SHIFTDATA COMMAND.

;LOOP COUNTERS ARE SET UP SO THAT LOADING OF THE JEDEC FILE CAN TAKE PLACE.

; PROGRAM THE DEVICE

;THE NEXT 4 LINES INITIALIZE COUNTERS AND DATA POINTER

; PROGRAMMING OF THE DEVICE IS TO TAKE PLACE IN THE
;EXECUTE STATE OF THE DEVICE.

MoV R3,#16D ; ROW COUNTER FOR ispGDS
MOV R2,#03D ; COLUMN COUNTER 3 BYTES/ROW
MOV R1,#08D ; SHIFT COUNTER WITH THE BYTE

MoV DPTR,#JEDEC_TABLE ; ADDR OF JEDEC FILE

.
’

ROWS:
LOADBYTE: CLR A ; CLEAR ACC
MOvC A, @A+DPTR ;LOAD FIRST BYTE OF JEDEC IN A

;MOVE CODE BYTE RELATIVE TO DPTR TO Acc
sMETHOD OF BRINGING IN STORED DATA IN THE CODE SEGMENT OF MEMORY.

3-19 In-System Programmability Manual

In-System Programming from an

Embedded Processor
LOOPS8: JB ACC.7,ITS_1 ;JUMP IF MSB IS 1
ITS_O: CLR SDI ;NO! MSB WAS 0, SO LOAD A 0
CLR MODE
ACALL SCLOCK
JMP OVER ; JUMP OVER TEST FOR BIT=1, IT WAS 0
ITS_l: SETB SDI sMSB IS 1, SO LOAD A 1
CLR MODE
ACALL SCLOCK
OVER:
RL A ; GET NEXT BIT IN ACC INTO MSB
; POSITION, ROTATE LEFT
DJNZ R1,LOOPS8
INC DPTR ; MOVE DATA POINTER TO THE NEXT BYTE
MOV R1,#08D ; RESET BIT POSITION COUNTER FOR ACC
DJNZ R2,LOADBYTE
MOV R2,#03D ; RESET BYTE COUNTER 3 BYTES PER ROW
ACALL PROGRAM ; PROGRAM A SINGLE ROW, PROGRAM A ROW
;AND RETURN
DJNZ R3,ROWS sREADY TO LOAD NEXT ROW WITH NEW
; DATA
ACALL IDLESTATE ;PLACE THE DEVICE IN A KNOWN STATE
;READY FOR NORMAL OPERATION.
PROG_COMP: SETB P1.5

ACALL DELAY200
ACALL DELAY200
CLR P1.5

ACALL DELAY200
AJMP PROG_COMP

;ON COMPLETION OF THE JEDEC PROGRAMMING
;THE DEVICE IS PLACED INTO AN ENDLESS
;LOOP OF FLASHING AN LED

B B G

SUBROUTINES

’

BULK_ERASE :

CALL IDLESTATE

ACALL SHIFTSTATE
ACALL BERASE_CMD
ACALL EXECUTE_STATE

ACALL EXECUTE
ACALL DELAY200
RET

BULK ERASE THE DEVICE

R i

; GO TO IDLESTATE

; GO TO SHIFT STATE
LOAD BULK ERASE CMD
GOTO EXECUTE STATE
EXECUTE BULK ERASE CMD
; CALL DELAY ROUTINE

Ne ~o =

3-20 In-System Programmability Manual

In-System Programming from an

Embedded Processor
;——ID SHIFT ENABLE-LX
SHIFT_EN: CLR MODE ;JUST SET THE REQUIRED BITS
RET ;WITHOUT PULSING THE CLOCK

j————SUBROUTINE FOR THE PROGRAMMING OF THE SHIFTED ROWS

PROGRAM: ACALL SHIFTSTATE ; GOTO SHIFT STATE (MOVE FROM THE
EXECUTE STATE TO THE SHIFT STATE)

ACALL EXECUTE

ACALL PROGRAM_CMD LOAD PROGRAM COMMAND
ACALL EXECUTE_STATE GOTO EXECUTE STATE
ACALL EXECUTE ; EXECUTE PROGRAM CMD
ACALL DELAY50

ACALL DELAYS50

~e ~e

ACALL SHIFTSTATE ; PROGRAMMING OF ONE ROW IS DONE
ACALL EXECUTE ; GET READY FOR NEXT ROW

;THE RETURN FROM THIS COMMAND IS IN THE SHIFT STATE (LOAD COMMANDS ;STATE)
ACALL SHFTDATA_CMD ;GET READY TO SHIFT IN NEXT ROW
ACALL EXECUTE_STATE
ACALL EXECUTE
RET

; —————IDLESTATE —HL—7m8 v

TDLESTATE : SETB MODE ;ALSO TLOADS THE DEVICE ID
CLR SDI ;SO THAT IT CAN BE SHIFTED OUT
ACALL SCLOCK
RET

;j——SHIFTSTATE ——HH

;7 GENERIC SUBROUTINE FOR THE CHANGING OF STATE
SHIFTSTATE: SETB MODE

SETB SDI

ACALL SCLOCK

RET

;——EXECUTESTATE ——HH.

EXECUTE_STATE: SETB SDI
SETB MODE
ACALL SCLOCK
RET
;j——LOAD ID STATE HL

LOAD_1ID: SETB MODE
CLR SDI
ACALL SCLOCK
RET

3-21 In-System Programmability Manual

In-System Programming from an
Embedded Processor

;—TOGGLE SCLK—LHL
SCLOCK: CLR SCLK
SETB SCLK
CLR SCLK
RET

; DELAY 50MS
;FOR 12 MHZ 13 BIT UP COUNTER OVERFLOW GENERATES AN INTERUPT
; 65535 - (50MS/12US)=61368—> EFB8 HEX

DELAY50: MOV THO, #OFH

MOV TLO, #OBAH

SETB TRO ;START TIMERO SET TCON.4
COUNTING: JB TFO, TIMEOUT

SJMP COUNTING ; COUNTING IN LOOP
TIMEOUT: CLR TFO

CLR TRO ; CLEAR TCON.4

RET

; DELAY 200MS

DELAY200: MOV RO, #04H

LOOP4: ACALL DELAY50
DJNZ RO, LOOP4
RET

j—BULK ERASE COMMAND
; BULK ERASE COMMAND: 00011

BERASE_CMD: CLR MODE ; MODE=0
SETB SDI ; SDI=1
ACALL SCLOCK ; SCLK LHL CLOCK IN 2 ONES
ACALL SCLOCK ;7 SCLK LHL
CLR SDI ; SDI=0
ACALL SCLOCK ; SCLK LHL
ACALL SCLOCK ; SCLK LHL
ACALL SCLOCK ; SCLK LHL

RET

;—EXECUTE COMMAND—LL
;THIS COMMAND CAN BE USED TO EXECUTE LOAD COMMAND AS WELL AS EXECUTE
7 INSTRUCTIONS

EXECUTE: CLR SDI
CLR MODE
ACALL SCLOCK
RET

j—PROGRAM COMMAND-

;THIS SUB ROUTINE DOES NOT HAVE THE SET UP REQUIRED PRIOR TO ENTERING
; INTO IT.

3-22 In-System Programmability Manual

In-System Programming from an

Embedded Processor

; PROGRAM COMMAND: 00111

PROGRAM CMD: CLR MODE ; MODE=0
SETB SDI ; SDI=1
ACALL SCLOCK ; SCLK LHL
ACALL SCLOCK ; SCLK LHL
ACALL SCLOCK ; SCLK LHL
CLR SDI ;s SDI=0
ACALL SCLOCK ; SCLK LHL
ACALL SCLOCK ; SCLK LHL
RET

;j——SHIFT DATA COMMAND-

; SHIFT DATA COMMAND: 00010
; SET UP OF THE COMMAND TO ACCEPT PROGRAMMING INFORMATION

SHFTDATA CMD: CLR MODE ; MODE=0
CLR SDI ; SDI=0
ACALL SCLOCK ; SCLK LHL
SETB SDI ; SDI=1
ACALL SCLOCK ; SCLK LHL
CLR SDI ; SDI=0
ACALL SCLOCK ; SCLK LHL
ACALL SCLOCK ;7 SCLK LHL
ACALL SCLOCK ; SCLK LHL

RET

;—— JEDEC DATA CONTAINS DUMMY BITS AND ADDRESSES

;NOTE THAT IN THE DATA BLOCK BELOW THAT THE COMPILER REQUIRES THAT
;NUMBERS DO NOT HAVE A LEADING A LETTER AND AS SUCH A LEADING 0 MUST
;BE INCLUDED.

;BIT MAPPING AND TRANSLATION OF THE JEDEC PATTERN THAT IS TO BE

; PROGRAMMED INTO THE PART. NOTE THE BYTES AND BITS HAVE BEEN REVERSED
;IN THE ORDER THAT IS SHOWN IN THE MANUAL.

;BIT SHIFTING IS DONE LEFT TO RIGHT.

; F A A A C 0
;1111 1010 1010 1010 1100 0000
;s F A A A E 0
;1111 1010 1010 1010 1110 0000
;s F A A A D 0
;1111 1010 1010 1010 1101 0000
; F A A A F 0
;1111 1010 1010 1010 1111 0000
; F A A A C 8
;1111 1010 1010 1010 1100 1000
; F A A A E 8
;1111 1010 1010 1010 1110 1000
; F A A A D 8
;1111 1010 1010 1010 1101 1000
;s F A A A F 8
;1111 1010 1010 1010 1111 1000

3-23 In-System Programmability Manual

In-System Programming from an
Embedded Processor

1

11

F
1
F
11
F
1

Ne ~e Ne ~e e

;1111
; A
;1010

1010

0

=
-

A

A
1010
A
1010
A
1010
A
1010
A
1010

A

A
1010
A
1010
A
1010
A
1010
A
1010

A

11 1010 1010 1010

A
1010
A
1010
A
1010
A
1010
A
1010

1

1

Ne Ne Ne Ne Ne Ne ~e e

A
0
A
0
A
0
A
0

A A A

[

A A A

10 1010 1010 1010

JEDEC_TABLE:

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

END

OFAH, 0AAH, 0COH
OFAH, 0AAH, 0EOH
OFAH, OAAH, ODOH
OFAH, 0AAH, OFOH
OFAH, OAAH, 0C8H
OFAH, OAAH, OE8H
OFAH, OAAH, 0D8H
OFAH, OAAH, OF8H
OFAH, OAAH, 0C4H
OFAH, OAAH, OE4H
OFAH, OAAH, 0D4H
OAAH, OAAH, OF4H
OAAH, OAAH, 0CCH
OAAH, OAAH, OAAH
OAAH, OAAH, 0OA9H

OAAH, OAAH, OABH

0 1010 1010 1010

C
1100
E
1110
D
1101
F
1111
C
1100
A
1010
A
1010
A
1010

4
0100
4
0100
4
0100
4
0100
C
1100
A
1010
9
1001
B
1011

END OF THE CODE SEGMENT FOR THE ispGDS22.

; USER CODE CAN BE APPENDED FROM THIS POINT FORWARD.

3-24

In-System Programmability Manual

ATE Programming
of ISP Devices

Overview

This section discusses how you can use Automatic Test
Equipment (ATE) to program and verify ISP devices. By
using ATE to perform the production programming of ISP
devices, you can avoid the overhead and time penalties
associated with the use of stand-alone device program-
mers. You can also enhance the testability of your product
with ATE programming, since you can develop custom
configurations of ISP devices specifically for board-level
testing, then reconfigure the ISP devices to the produc-
tion pattern after board test is complete.

Advantages of ISP ATE Programming
Figure 1. ISP Manufacturing Flow

Standard Flow
Using Non-ISP Devices

DRAW PARTS FROM
STORES (1 P/N)

PROGRAM EACH
PART

Enhanced Flow
Using ISP Devices

DRAW PARTS FROM
STORES (1 P/N)

LABEL EACH
PROGRAMMED PART

I‘I

RETURN PARTS
TO STORES
(MULTIPLE P/N's)

DRAW PARTS FROM
STORES TO ASSEMBLY

BOARD ASSEMBLY

BOARD ASSEMBLY

BOARD TEST
*Diagnostics using ISP
*Final Programming
*Final Board Test
*Boundary Scan

BOARD TEST

ATE programming allows a dramatic simplification of the
standard PLD flow which translates into significant cost
savings, specifically for the reasons listed below:

¢ Reduced manufacturing steps (Figure 1)

* Reduced handling/no bent leads

« Elimination of mixed patterns/wrong socketing
* Simplified inventory requirements

Overview of ATE Programming Process

All Lattice ISP devices are programmed through the use of
fourorfive TTL level signals, referred to as the ISP interface.
Data is serially shifted into the device and, through the use
of ISP programming instructions, used to program the
device (see section"ISP Design Flow" in The Basics of ISP).
Since this interface uses TTL levels, it is easily driven by an
ATE tester.

Since the device programming information is defined as a
JEDEC file, any ATE programming solution requires that
you first create a JEDEC file, then have some way of
translating the JEDEC file into signals on the ISP interface
driven by the ATE. There are two methods of performing this
translation that are currently available:

» Create test vectors to program the devices using a
translation tool from Lattice
* Write a program in the ATE's high-level language

Both of these methods are discussed in the next sections.
A brief overview of the advantages and disadvantages of
each approach is shown in Table 1.

Table 1. Translation Methods

ATE Method A 0 Di:

Test Vector Generation »Can use existing Lattice utiliies | * Large number of vectors
« Format can be changed for Tester must be able to
different tester requirements accept test vector input

Custom Tester Program » Compact (few vectors) * User must understand
«May be faster than test vector | 1SP programming
approach * May require more

development time

Generating Test Vectors

The test vector approach to programming ISP devices
requires that you create a set of vectors froma JEDEC file
which will program the device using the ISP interface.
The number of vectors required will be quite large (for
example, the ispLSI 1032 requires 150K vectors for ATE
program and verify), thus you will be required to use
some sort of software tool to create the test vectors from
a JEDEC file.

Lattice provides test vector creation tools free of charge
via the Lattice BBS, as described in the following section
"Lattice Test Vector Creation Software". This software

3-25

In-System Programmability Manual

ATE Programming of ISP Devices

creates the test vectors necessary to program a device Figure 2. What s called a temporary file in Figure 2 would

from a JEDEC file. have been the parallel port of the PC. But as you can see
from the figure, the internal mechanism of how this

The tools are based on Lattice's ispCODE™ software. process works is transparent. You simply input a JEDEC

The ispCODE software supports the programming ofone fije, and get test vectors out in your tester format.

or more ISP devices through the parallel port of a PC,

which is attached through a cabie, cailed the .

ispDOWNLOAD™ cable, to the ISP interface. The soft- Figure 2. Test Vector Creation Software

ware drives the pins of the parallel port to program the

ISP device. The test vector creation software simply -

redirects these pin values to a file, instead of to the iSPCODE T

parallel port of the PC. The file contents can then be Jodec P g

processed and converted to the vector format required by

a particular tester (Table 2). This process is illustrated in

Table 2. Lattice Supported Testers Tester
Formatting

Company Model

Hewlett Packard All testers including:
Models 3060, 3065,
3070, 3073

GenRad GR228X/e Series

Terad 0 Seri i i

eracyne 3\1,2&()?;:5;;?%)&2[? ries As an example, Hewlett Packard's board testers require
must be installed vectorsintheir"HP-PCF" format. An example of HP-PCF
compliant test vectors is shown in Listing 1.

Listing 1. HP-PCF Test Vector Format

khkdkhkkhkkhkhkhkhhhhhhhhhhhhhhkdhhkdhhkhkhkhkhkhhhkhhkhhhhhhhhhkhkhkkkkkkkkkkkkkkkx

TEST PROGRAM HEADER
Ihkkkkk ok ko kR kkk ok kkk Rk ko k ok kkkkkhkkkkkkkkhkk ok ko kkkkkkk ko k ok ok k ok &

!
!
!
!
! Created: Thu Mar 31 15:56:13 1994
! JEDEC input: cnt32a.jed
!
!
!
!

Khhhkhkhkhhhkhhkhhkhhkhkhhkdhhhkhhhkhkhkhkhhkhkhkhhkh kb kb kA kb ko k ok khkkkhkkhkhhkhkdhkk kK

DECLARATION SECTION
Kk khkkkkkh ko h kR k Ak kkkkkkkkkkkkkk ok k ok k ek ko ko k ok ko ok ek ok ok deok ok Kk

! SINGLE-PIN ASSIGNMENTS:

assign SCLK to pins
assign SDI to pins
assign SDO to pins
assign MODE to pins
assign ISPEN to pins

s wN

family TTL
! TYPE CLASSIFICATIONS:
nondigital UNUSED

3-26 In-System Programmability Manual

ATE Programming of ISP Devices

inputs SCLK, SDI, MODE, ISPEN
outputs SDO

pcf order is SDO, ISPEN, MODE, SCLK, SDI

! KEA KKK KK AR KRR AN KRAKNR R AR A A A AR ARk khh kA Ak Ak hkkkhkhk kb hkkhkkhkhkhkhkhhkhkhhhkhhhkx
! VECTOR EXECUTION SECTION
! hhhkkhkhkhkhkhkhhkhhhkhkhhkhkhhkkdhhkkhkrAhhhkhrkhkhkhhhhhhhkhkhhkhkhhkhkhkhkhhkhkhhhhkhkhhhhdhhhkk
unit “ul”

pcf

“X0101"

“X0111"

! Vector 100460

“X0000"

“X0010"

“X0001~

“X0011~

“X0000"

“X0010"

“X0000"

“X0010"

“X0000"

“X0010"

! Vector 100470

“X0101"

“X0111~

“X0001"

“X0011”~

“X0001~

“X0011”

(deleted section of vectors)
“X0101"

“X0111"

“X0000"

“X0010"

end pcf

wait 45m

pcf

“X0101"

“X0111"

! Vector 100810

“X0100"

“X0110"

end pcf

end unit

3-27 In-System Programmability Manual

ATE Programming of ISP Devices

Lattice Test Vector Generation Software

Lattice has created utilities to aid in the generation of test
vectors. The most current (and recommended) approach
is to use the Lattice ISP Serial Programmer software,
available on the Lattice Hillsboro BBS as SERIAL.ZIP
and also as uncompiled C++ source code in the example
Windows application included with ispCODE. In addition
to providing serial programming of the ISP device family
through the parallel port of a PC, the utility also has an
option to generate test vectors. These test vectors also
support serial programming.

An earlier utility, called JED2PCF, is also available on the
BBS as JED2PCF.ZIP. This is a DOS, command-line
version that generates HP-PCF format vectors only for

the ispLSI 1016, 1024, 1032, and 1048 devices. It does
not support serial programming. The vectors it generates
support programming one device at a time only (no daisy
chain support).

Moving back to the more integrated Lattice ISP Serial
Programmer Software, test vector generation is started
by selecting the Generate_Vectors option. The software
then displays a dialog box which gives the user control
over various vector generation options (Figure 3).

Vector Generation Options

The various test vector options are summarized in Table
3. Since this is a preliminary version of the software,
these options are subject to change.

Figure 3. Test Vector Generation Parameter Dialog Box

o) Lattice ISP Serial Programmer — Version 1.2.2beta

b

Configure

Generate_Vectors

Script Help

atus Window]

Test Vector Generation Parameters |

Name for the vector

Furmal] file(s) to be created
oweer |
o} Teradyne

- Maximum Number
C GenRad of Vectors per File

L]

Type
[O Program O Program and Verity —‘

Table 3. Test Vector Generation Options

Vector Fiies

Catagory Options
Format HP-PCF: Test Vectors
Teradyne: Test Vectors
GenRad: Test Vectors
Type Program: Generates Vectors for Programming Only
Program and Verify: Generates Vectors for both Programming and Verification
Name for One or more files are created containing the vectors. If there are too many vectors per file,

additional files are created (see "Max Vectors Per File" below). The first six characters of
the name you enter are used as the base for the file name and an additional two characters
indicate which file it is in the set of vector files (example: vector01, vector02...etc.).

Max Vectors
per Files

Your tester may only be able to handle a certain number of vectors per file. The "Max
Vectors Per File" field sets the limit. When the limit is reached, a new file is created
to contain the additional vectors.

3-28

In-System Programmability Manual

ATE Programming of ISP Devices

Writing Software in High-Level Language

Another approach to programming Lattice ISP devices
on a tester is to develop a high-level language program
in the tester’s language. For example, some models of
the GenRad tester family support a programming lan-
guage similar to Pascal. Developing a high-level language
test program for programming ISP devices requires a
thorough understanding of the ISP interface. Also, users
need to know how the fuses in the JEDEC file will
correspond to bits in the rows of data that are shifted into
the device. For the ispLSI family, this correspondence is
straightforward. For the ispGAL22V10 and ispGDS de-
vices, however, the fuse map to data bit mapping is more
complex, requiring extra bits for row addressing, and for
the ispGAL22V10, some difficult cross referencing.

Fortunately, some Teradyne testers are IBM PC con-
trolled, so they can use C or C++, the same language as
ispCODE. Thus, when high-level routines need to be

Listing 2. AWK program for modifying the JEDEC file

implemented in Teradyne testers, you only have to modify
the existing ispCODE routines to suit your application.
Please refer to the ispCODE section in this manual for a
thorough discussion of the ispCODE routines.

For users who do not have testers which support the C
language, the following example is a step-by-step guide
to programming the ispLSI 1032 on a GenRad tester. The
GenRad language is based on Pascal with simple addi-
tions to control properties of the tester. The test program
flow chart is described in the GenRad ISP Program
Procedure which begins on the next page. To speed up
the programming time, the address shift register is not
reloaded for each location. Instead, a "1" is clocked
through the shift register. This saves time but requires the
JEDEC file to be altered so that the first address is last.
A simple AWK program, detailed in Listing 2, completes
this task before the file is moved over to the tester.

£! /bin/sh

if test $£ -1t 1
then
echo
echo
echo
exit 1
fi

£
echo
echo

Usage : jedconv [filename.jed]

echo is saved as isp.tsr.

echo

echo converting ispLSI jedec file
echo

£

awk ‘{x[NR]=$0}
END {for(i=NR; i>0; i=i-4)

\rm tempjed

echo Conversion complete.

echo
L

Please reenter file name with extension !

This program takes the standard Lattice JEDEC file and
converts it for accelerated programming. The new version

awk ‘lenth($1)>79 && length($1)<81 {print $1 > “tempjed”}’ $*

printf(“%s\n%s\n%¥s\n%s\n”,x[i-3],x[i-2],x[i-1],x[1])> “isp.tsr”}’' tempjed

3-29

In-System Programmability Manual

ATE Programming of ISP Devices

The GenRad ISP Program Procedure

The following is an overview of the GenRad program. The complete listing follows the overview.

Header Section

Step Actions

1. Define Procedure
2. Define Signal Types
3. Define Variables

4. Define delay times
5. Begin Program

6. Define device

7. Set up burst mode

Bulk Erase Section

Step Actions

8. Move to shift state

9. Take MODE low

10. Clock in Bulk erase command
11. Move to execute state

12. Execute erase command

Examples
test U1 dproc = d_fail_proc

signal IN8, 1048, 1049 SDO_IN2

: hemos_logic hcmos_currentset verify ;

signal SDI_INO, SCLK_IN3, MODE_IN1, ISPEN,
RESETX

: hemos_logic hcmos_currentset;

VAR

lapse : integer;

fuse_map : array [1 .. 34560] of char;
data_reg : array [1 .. 320] of logic;

testjed : text ;

cycle default interval:= 500n;
@(400n) sense ()

end;

cycle prog_delay interval := 2m;

end cycle;

begin
d_component := ‘U1’;

burst initialize active nomaxtime
begin

Examples
sck MODE_IN1:=1 SDI_INO :=1;

last_event MODE_IN1 :=0;

sck SDI_INO := 1;
sck SDI_INO := 1;
sck SDI_INO := 0;
sck SDI_INO := 0;
sck SDI_INO := 0;

sck MODE_IN1:=1 SDI_INO :=1;

last_event MODE_IN1 :=0;
sck;

3-30 in-System Programmability Manual

ATE Programming of ISP Devices

13. Wait for bulk erase to for lapse :=1to 120 do
complete begin
prog_delay;
end;

Programming Section

Step Actions Examples

14. Move to shift state last_event MODE_IN1 :=1;
sck;

15. Take MODE low last_event MODE_IN1 :=0;

16. Load Address Shift command sck SDI_INO := 1;
sck SDI_INO :=0;
sck SDI_INO := 0;
sck SDI_INO := 0;
sck SDI_INO := 0;

17. Move to execute state last_event MODE_IN1 :=1;
sck SDI_INO := 1;

18. Execute command last_event MODE_IN1 :=0 SDI_INO :=0;
19. Fill Address buffer with ‘0’s for addr_reg :=1to 107 do

begin

sck;

end:

20. Clock in ‘1’ to address row 108 sck SDI_INO :=1;

21. Move to idle state last_event MODE_IN1 := 1 SDI_INO :=0;
sck;
22. Move out of burst mode end burst initialize
23. Open program file reset (testjed, ‘/work/fk/isp/isp.data’);
24, Set up Loops to copy for line_num := 0 to 431 do
ISP data to an array begin
for char_num := 1 to 80 do
begin
25. Copy the JEDEC file read (testjed,fuse_map|[(char_num+(80 * line_num))]);
into an array end;
26. Ignore the carriage return readin(testjed);
end;
27. Begin programming loop for addr_num := 0 to 107 do
begin
28. Convert array from type for fuse_num := 1 to 320 do
char to type logic begin

3-31 In-System Programmability Manual

ATE Programming of ISP Devices

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Move back to burst mode

Move to shift state

Take MODE low

Load data shift command

Move to execute state

Execute command

Shift in high order bits

Move to shift state

Take MODE low

Load program high order

Move to execute state

Execute command

Wait for device to finish
programming

if fuse_mapl[(fuse_num+(320*addr_numy))]="1' then
data_reg[fuse_num] := b’1

else

data_reg[fuse_num] :=b’0

end;

burst blow_test_function active nomaxtime inherit initialize;
begin

last_event MODE_IN1 := 1;

sck SDI_INO := 1;
last_event MODE_IN1 :=0;
sck SDI_INO := 0;
sck SDI_INO := 1;
sck SDI_INO := 0;
sck SDI_INO := 0;
sck SDI_INO := 0;

last_event MODE_IN1 :=1 SDI_INO := 1;
sck;

last_event MODE_IN1 :=0 SDI_INO :=0;
for fuse_num := 1 to 160 do

begin

sck SDI_INO := data_reg[fuse_num];
end;

last_event MODE_IN1 := 1 SDI_INO := 1;
sck;

last_event MODE_IN1 :=0;

sck SDI_INO := 1;
bits commandsck SDI_INO := 1;
sck SDI_INO := 1;
sck SDI_INO := 0;

sck SDI_INO := 0;

last_event MODE_|
sck;

N1 :=1 SDI_INO :=1;

last_event MODE_IN1 :=0 SDI_INO :=0;
sck;

for lapse := 1 to 25 do
begin

prog_delay;

end;

3-32 In-System Programmability Manual

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

ATE Programming of ISP Devices

Move to shift state

Take MODE low

Load data shift command

Move to execute state

Execute command

Shift in low order bits

Move to shift state

Take MODE low

Load pregram low order

bits command

Move to execute state

Execute command

Wait for device to finish
programming

Move to shift state

Take MODE low

Load address shift command

last_event MODE_IN1 :
sck;

last_event MODE_IN1 :
sck SDI_INO := 0;
sck SDI_INO := 1;

sck SDI_INO := 0;
sck SDI_INO := 0;
sck SDI_INO := 0;

last_event MODE_IN1 :
sck;

last_event MODE_IN1 :

=1 SDI_INO := 1,
:O’

=1 SDI_INO := 1;
=0 SDI_INO :=0;

for fuse_num := 161 to 320 do

begin

sck SDI_INO := data_reg[fuse_num];

end;

last_event MODE_IN1 :
sck;

last_event MODE_IN1

sck SDI_INO := 0;
sck SDI_INO := 0;
sck SDI_INO := 0;
sck SDI_INO :=1;
sck SDI_INO := 0;

last_event MODE_IN1
sck;

last_event MODE_IN1
sck;

for lapse := 1 to 25 do
begin

prog_delay;

end;

last_event MODE_IN1
sck;

last_event MODE_IN1

sck SDI_INO :=1;
sck SDI_INO := 0;
sck SDI_INO := 0;
sck SDI_INO := 0;

=1 SDI_INO :=1;

:=0;

:=1 SDI_INO := 1,

:=0 SDI_INO :=0;

=1 SDIL_INO := 1;

:=0;

3-33

In-System Programmability Manual

ATE Programming of ISP Devices

57.

58.

59.

60.

61.

62.

Move to execute state

Execute command

Clock the address shift
register one place

Move to idle state

Move out of burst mode

End of Array proc loop

sck SDI_INO := 0;

last_event MODE_IN1 :=1 SDI_INO := 1;

sck;

(

last_event MODE_IN1 :=0 ;
sck SDI_INO := 0;

last_event MODE_IN1 := 1;
sck;

end burst blow_test_function;

end;

The following is a complete listing of a GenRad program to program a Lattice ispLSI 1032 device.

Listing 3. GenRad Program for Programming ispLSI| 1032 Device.

(* Test and programming routine for ispLSI1032.

*)

Test & program sequence is

1. ID-CHECK

2. FLOWTHROUGH TEST
3. BULK-ERASE

4. PROGRAM TEST S/W
5. TEST DEVICE

6. BULK-ERASE

7. PROGRAM MAIN S/W
8. VERIFY DEVICE

9. SET UES

10. SECURE

test Ul dproc=d_fail proc ;

signal IN6, IO48, I049, IO50, IO51, I052, I0O53, IO54, IOS55,

1056, 1057, 1058,

Yl, IN4, IO0, IOI1,
1010, 1011, 1012,

1019, 1020, 1021,

1029, 1030, 1031,

1034, 1035, 1036,

SDO_IN2

1059,

102,
1013,
1022,
1046,
1037,

1060,
103,

1061, 1062,
104, IO5, I06,
1014, 1015, IN5, IOl6,
1023, 1024, 1025,
Y3, 1038, 1039,
1047, 1043,

1040,
1044,

hcmos_logic hcmos_currentset verify;

SDI_INO,

SCLK_IN3, MODE_INI,

ISPEN, RESETX

hcmos_logic hcmos_currentset;

VAR
yesno char;
testjed : text;

1063,

107, 108,
1026, 1027,
1033,

I041, 1042,

YO0, Y2,
109,
1018,
1028,

1045,

3-34

In-System Programmability Manual

ATE Programming of ISP Devices

mainjed : text;
verfout : text;
lapse : integer;
err cnt : integer;

addr_reg : integer;
addr_num : integer;
line_num : integer;
char_num : integer;

fuse_num : integer;
veri_cnt : integer;
data_reg : array([l1..320] of logic;
verflgic : array[l..320] of logic;
verfchar : array[1l..320] of char;
fuse_map : array[l..34560] of char;

cycle default interval:=500n;
@(400n) sense()
end;

cycle sck interval:=2.7u;
sclk_in3 :@(700n, 1.7u) drive (1) qO0;
sdi_in0 :@0n drive();
mode_inl :€0n drive();
sdo_in2 :@2.5u sense();
ispen :@0n drive();
resetx :@0n drive();
end cycle;

cycle prog_delay interval:= 2m;
end cycle;

cycle verify pause interval:= 30u;
end cycle;

cycle isp_sig interval:= 10u;
ispen :@0n drive();

end cycle;

begin
d_component:='Ul";

writeln(‘Initial sequence running’);

burst initialize active nomaxtime;
begin

(* test ml *)
(***************************)

(* SEQUENCE 1 : ID CHECK *)

(***************************)

sck ISPEN:=1 SDI_INO:=1 MODE_IN1l:=1 RESETX:=1
SDO_IN2=b’U; (*initialize clk¥*)

3-35 In-System Programmability Manual

ATE Programming of ISP Devices

isp_sig ISPEN:=0; (*ispen low for 10us to enter prog statex)
$ ISPEN:=0 SDI_INO:=0 MODE_IN1:=0 ; (*put device in idle state*)

$ RESETX:=0; (*hold low throughout to prevent internal data contentionx*)

sck MODE_IN1:=1; (*load device id to shift reg*)

$ SDI_INO:=1 MODE_IN1:=0; (*prepare to read id¥*)

(*the id for an ispLSI1032 is 00000011. The 1lst bit is active as soon as
mode goes low and is the 1lsb. 7 more clocks will shift out the id on

the SDO pin, then on clk#8 the level at SDI (as it was at clk#1)
will appear at SDO¥*)

$ SDO_IN2=1; (*read 1lst id bit*)

sck SDO_IN2=1; (*read 2nd bit¥*)

sck SDO_IN2=0; (*read 3rd bitx)

sck SDO_IN2=0; (*read 4th bit¥)

sck SDO_IN2=0; (*read 5th bit¥*)

sck SDO_IN2=0; (*read 6th bit¥*)

sck SDO_IN2=0; (*read 7th bit¥*)

sck SDO_IN2=0; (*read 8th bit¥)

sck SDO_IN2=1; (*SDI i/p shifted from clk#l*)

$ SDO_IN2=b'U;

(***********************************)

(* SEQUENCE 2 : FLOWTHROUGH TEST *)

(***********************************)

sck MODE_IN1:=1 SDI_INO:=1; (*move to shift state*)

(*load flowthru command, instruction is 01110 loading 1sb 1lst*)
sck MODE_IN1:=0 SDI_INO:=0;

sck SDI_INO:=1;
sck SDI_INO:=1;
sck SDI_INO:=1;
sck SDI_IN0:=0; (*load complete*)

sck MODE_IN1l:=1 SDI_INO:=1; (*move to execute state*)
sck MODE_IN1:=0; (*execute flowthru command®*)

(* check sdi = sdo *)
SDI_INO:=1 SDO_IN2=1;
SDI_INO:=0 SDO_IN2=0;
SDI_INO:=1 SDO_IN2=1;
SDI_INO:=0 SDO_IN2=0;
SDI_INO:=1 SDO_IN2=1;
SDI_INO:=0 SDO_IN2=0;
SDI_INO:=1 SDO_IN2=1;
SDI_INO:=0 SDO_IN2=0;
SDI_INO:=1 SDO_IN2=1;
SDI_INO:=0 SDO_IN2=0;
SDO_IN2=b’'u;

L rnnrnnennnnn

3-36 In-System Programmability Manual

ATE Programming of ISP Devices

(’\'*‘k**************************)

(* SEQUENCE 3 : BULK ERASE *)

(**************************‘k**)

sck MODE_INl:=1 SDI_INO:=1; (*move to shift state*)

(*load bulk erase command, instruction is 00011 loading lsb 1lst*)
sck MODE_IN1:=0 SDI_INO:=1;

sck SDI_INO:=1;

sck SDI_INO:=0;

sck SDI_INO:=0;

sck SDI_INO0:=0; (*load complete¥*)

sck MODE_IN1:=1 SDI_INO:=1; (*move to execute state*)
sck MODE_IN1:=0; (*execute erase command*)

for lapse := 1 to 120 do (*wait 240ms for erase to finish¥*)
begin

prog_delay;

end;

(************‘k**********************)

(* SEQUENCE 4 : PROGRAM TEST S/W *)

(***********************************)

sck MODE_IN1l:=1 SDI_ INO:=1; (*move to shift state*)

(*load address shift command, instruction is 00001 loading lsb 1lst*)
sck MODE_IN1:=0 SDI_INO:=1;

sck SDI_INO:=0;

sck SDI_INO:=0;

sck SDI_INO:=0

sck SDI_INO0:=0

’
’

(*load complete*)

sck MODE_INl:=1 SDI_INO:=1; (*move to execute state*)

$ MODE_IN1:=0 SDI_INO0:=0; (*execute address shift command*)

for addr_reg := 1 to 107 do (*initialize address register*)

begin

sck;

end; (*addr reg now full of zero’sx*)

sck SDI_INO:=1; (*address row 107 set to ‘l’ and ready to program*)
sck MODE_INl:=1 SDI IN0O:=0; (*enter idle state*)

end burst initialize; (* END OF BURST *)

writeln(‘Reading isp data from file’);

reset(testjed, ' /work2/fk/isp/isp.data’); (*open ispdata filex)

3-37 In-System Programmability Manual

ATE Programming of ISP Devices

(*load the jedec data from file to burst array*)

for line_num := 0 to 431 do (*432 lines in the isp file¥)

begin

for char_num := 1 to 80 do (*each line is 80 chars long¥*)

begin

read(testjed, fuse_map([(char_num + (80 * line_num))]);(*load the array*)

end;
readln(testjed); (*ignore carriage return at end of line¥)

end;
(* the array ‘fusemap’ now contains the isp file¥*)
(* START OF DEVICE ARRAY PROGRAMMING LOOP *)

writeln(‘Programming loop running’);

for addr_num := 0 to 107 do (*address loop counter*)
begin

(*load fuse map array one address at a time to data reg array and
simultaneously convert type ‘char’ to type ‘logic’*)
for fuse num := 1 to 320 do

begin

if fuse map[(fuse_num + (320 * addr_num))] = ‘1’ then
data_reg[fuse_num] := b’l

else

data_reg[fuse _num] := b’0;

end;

burst blow_test_ function active nomaxtime inherit initialize;
begin

sck MODE_INl:=1 SDI_INO:=1; (*move to shift state*)

(*load data shift command, instruction is 00010 loading lsb 1lst*)
sck MODE_IN1:=0 SDI_INO:=0;

sck SDI_INO:=1;

sck SDI_INO0:=0;

sck SDI_INO:=0;

sck SDI_INO:=0; (*load complete*)

sck MODE_IN1l:=1 SDI_INO:=1; (*move to execute state*)

$ MODE_IN1:=0 SDI_INO:=0; (*execute data shift command*)

(* shift in 160 high order bits for row to be programmed *)
for fuse num := 1 to 160 do

begin

sck SDI_INO:= data_reg[fuse_num];

end;

sck MODE_INl:=1 SDI_INO:=1; (*move to shift state*)

(*load program high data command, instruction is 00111 loading lsb 1st*)

3-38 In-System Programmability Manual

ATE Programming of ISP Devices

sck MODE_IN1:=0 SDI_INO:=1;

sck SDI_INO:=1;

sck SDI_INO:=1;

sck SDI_INO:=0;

sck SDI_INO:=0; (*load complete*)

sck MODE_INl:=1 SDI_INO:=1; (*move to execute statex*)
sck MODE_IN1:=0 SDI_INO:=0; (*execute program high data command*)

for lapse := 1 to 25 do (*wait 50ms for high bits of row to be programmed*)
begin

prog_delay;

end;

sck MODE_IN1l:=1 SDI_INO:=1; (*move to shift state*)

(*load data shift command, instruction is 00010 loading lsb 1lst*)
sck MODE_IN1:=0 SDI_INO:=0;

sck SDI_INO:=1;
sck SDI_INO0:=0;
sck SDI_INO:=0;
sck SDI_INO:=0; (*load complete¥*)

sck MODE_IN1l:=1 SDI_INO:=1; (*move to execute state*)

$ MODE_IN1:=0 SDI_INO:=0; (*execute data shift command*)
(* shift in 160 low order bits for row to be programed *)

for fuse num := 161 to 320 do
begin

sck SDI_INO:= data_reg[fuse_num];
end;

sck MODE_INl:=1 SDI_INO:=1; (*move to shift state%*)

(*load program low data command, instruction is 01000 loading lsb 1lst¥*)
sck MODE_IN1:=0 SDI_INO:=0;

sck SDI_INO:=0;

sck SDI_INO:=0;

sck SDI_INO:=1;

sck SDI_INO:=0; (*load complete*)

sck MODE_INl:=1 SDI_INO:=1; (*move to execute state*);

sck MODE_IN1:=0 SDI_INO:=0; (*execute program low data command¥*)

for lapse := 1 to 25 do (*wait 50ms for low bits of row to be programmed*)
begin

prog_delay;

end;

sck MODE_IN1l:=1 SDI_INO:=1; (*move to shift state¥)

3-39 In-System Programmability Manual

ATE Programming of ISP Devices

(*load address shift command, instruction is 00001 loading lsb 1lst*)
sck MODE_IN1:=0 SDI_INO:=1;

sck SDI_INO:=0;

sck SDI_INO:=0;

sck SDI_INO:=0;

sck SDI_INO:=0; (*load complete*)

sck MODE_IN1l:=1 SDI_INO:=1; (*move to execute state*)

sck MODE_IN1:=0 SDI_INO:=0; (*move addr reg to next row, the address
reg will be clear after the last loop*)

sck MODE_IN1l:=1; (*move to idle state¥)

end burst blow_test_ function; (* END OF BURST *)
end; (* END OF ARRAY PROGRAMMING LOOP *)
writeln(‘Device programmed.');

(******************************)

(* SEQUENCE 8 : VERIFY DEVICE *)

(******************************)
writeln(’Verifying...’);

burst verification active nomaxtime inherit blow_test_function;
begin

(* device is in idle state *)
sck MODE_INl:=1 SDI_INO:=1; (*move to shift state*)

(*load address shift command, instruction is 00001 loading lsb 1lst*)
sck MODE_IN1:=0 SDI_INO:=1;

sck SDI_IN0:=0;

sck SDI_INO:=0;

sck SDI_INO:=0;

sck SDI_INO0:=0; (*load complete*)

sck MODE_IN1:=1 SDI_INO:=1; (*move to execute state*)

$ MODE_IN1:=0; (*execute address shift command¥*)

sck SDI_INO:=1; (* address last row *)

sck MODE_IN1l:=1 SDI_INO:=1; (*move to shift state*)

(*load ver/ldh command, instruction is 01010 loading lsb 1lst¥*)
sck MODE_IN1l:= SDI_INO:=0;

sck SDI_INO:=1;

sck SDI_INO0:=0;
sck SDI_INO:=1;

3-40 In-System Programmability Manual

ATE Programming of ISP Devices

sck SDI_INO:=0; (*load complete*)

sck MODE_IN1l:=1 SDI_INO:=1; (*move to execute statex)
sck MODE_IN1:=0 SDI_INO:=0; (*execute ver/ldh command*)

verify pause; (* wait 30u for data reg to load *)

sck MODE_IN1l:=1 SDI_INO:=1; (*move to shift statex*)

(*load data shift command, instruction is 00010 loading lsb 1lst¥*)
sck MODE_IN1:=0 SDI_INO:=0;

sck SDI_INO:=1;

sck SDI_INO:=0;

sck SDI_INO:=0;

sck SDI_INO:=0; (*load complete*)

sck MODE_IN1l:=1 SDI_INO:=1; (*move to execute state%*)
$ MODE_IN1:=0 SDI_INO:=0; (*execute data shift command¥*)

(*clock out the high order bits from the data reg *)

for veri_cnt := 1 to 160 do
begin

$ verflgic[veri_cnt]:=sdo_in2;
sck ;

end;

sck MODE_IN1l:=1 SDI_INO:=1; (*move to shift statex*)

(*load ver/1dl command, instruction is 01011 loading lsb 1st*)
sck MODE_IN1:=0 SDI_INO:=1;

sck SDI_INO:=1;

sck SDI_INO:=0;

sck SDI_INO:=1;

sck SDI_INO:=0; (*load complete*)

sck MODE_IN1l:=1 SDI_INO:=1; (*move to execute state*)

sck MODE_IN1:=0 SDI_INO:=0; (*execute ver/ldl command*)

verify pause; (* wait 30u for data reg to load *)

sck MODE_IN1:=1 SDI_INO:=1; (*move to shift state*)

(*load data shift command, instruction is 00010 loading lsb 1lst*)
sck MODE_IN1:=0 SDI_INO:=0;

sck SDI_INO:=1;

sck SDI_INO:=0;

sck SDI_INO:=0;

sck SDI_INO:=0; (*load complete*)

sck MODE_IN1l:=1 SDI_INO:=1; (*move to execute state*)

3-41 In-System Programmability Manual

ATE Programming of ISP Devices

$ MODE_IN1:=0 SDI_INO:=0; (*execute data shift command*)

(*clock out the low order bits from the data reg *)
for veri_cnt := 161 to 320 do

begin

$ verflgic[veri_cnt]:=sdo_in2;

sck ;

end;

sck MODE_IN1l:=1 SDI_INO:=0; (*move to idle state*)
end burst verification; (* END OF BURST *)
(* convert data type and compare data *)

err cnt := 0;
yesno := ‘n’;

for veri_cnt := 1 to 320 do

begin

if verflgic[veri cnt] = b’l then (*convert type logic to type char¥*)
verfchar[veri_cnt]:="1"

else

verfchar[veri_cnt]:='0";

if verfchar[veri_cnt] <> fuse_map[veri_cnt] then (*compare with jedfile¥)
err_cnt := err_cnt + 1;

end;

(* failure routine *)

if err_cnt > 0 then

begin

setfail;

writeln(’Verification failure!!’);
writeln(’failed ‘,err_cnt,’ bit(s) out of 320.’);
write(‘Write error file? ([y/n]’);
readln(yesno);

end

else

writeln(‘Verify has passed.’);

(* write out error file if req’d for programmers attention¥*)
if yesno = ‘y’ then

begin

write(‘Writing to file...');
rewrite(verfout,’'/work2/fk/isp/verify.err’);

for line_num := 0 to 3 do

begin

for veri_cnt := 1 to 80 do

begin

write(verfout,verfchar[(veri_cnt + (80 * line num))]);
end;

writeln(verfout);

3-42 In-System Programmability Manual

ATE Programming of ISP Devices

end;

writeln(‘Done.’);

writeln(‘Last line written to “verify.err”’);
end;

(******************************)

(* SEQUENCE 5 : TEST DEVICE *)
(F*H Ak ke kR ko k ok ok ko k kS kR kR kK kK)

writeln(‘Testing function’);

burst test_device active nomaxtime inherit verification;
begin

(*test vectors here to test counter example in lattice book*)
isp_sig ISPEN:=1; (*wait 10us to leave prog state*)

$ SDI_INO:=1 MODE_INl:=1 RESETX:=1; (*hold prog pins*)

$ Y0:=0 IOO0:=1 IOl:=1 I02:=0;

$ 102:=1;

$ Y0:=1;

$ Y0:=0; (*CNTR IS RESET O/P’S ARE LOW*)

$ I102:=0; (*READY TO CNT*)

$ I036=0 I037=0 I038=0 I039=0 I032=0;(*0000%)
$ Y0:=1 nofails;

$ Y0:=0 nofails;

I036=0 I037=0 I0O38=0 IO39=1 IO032=0;(*0001*)
Y0:=1 nofails;
Y0:=0 nofails;

w n v

I036=0 IO37=0 I038=1 I039=0 I032=0;(*0010%*)
Y0:=1 nofails;
$ Y0:=0 nofails;

w n

I036=0 IO37=0 I038=1 I0O39=1 I032=0;(*0011l%*)
Y0:=1 nofails;
Y0:=0 nofails;

v n »

$ I036=0 IO37=1 IO038=0 I039=0 I032=0;(*0100%*)
$ Y0:=1 nofails;
$ Y0:=0 nofails;

$ I036=0 IO37=1 I038=0 I039=1 I032=0;(*0101*)
Y0:=1 nofails;
$ Y0:=0 nofails;

R %]

I036=0 IO37=1 I038=1 I039=0 I032=0;(*0110%*)
Y0:=1 nofails;
Y0:=0 nofails;

v »n»n

3-43 In-System Programmability Manual

ATE Programming of ISP Devices

" v

«w n v nn

" n

v

v »n

v v

end burst test_device;

I036=0 I037=1 IO38=1 I039=1 I032=0;(*0111l%*)

Y0:=1 nofails;
Y0:=0 nofails;

I036=1 I037=0 I038=0

Y0:=1 nofails;
Y0:=0 nofails;

I036=1 I037=0 I038=0

Y0:=1 nofails;
Y0:=0 nofails;

I036=1 I037=0 I038=l1

Y0:=1 nofails;
Y0:=0 nofails;

I036=1 I037=0 I038=1

Y0:=1 nofails;
Y0:=0 nofails;

I036=1 I037=1 1038=0

Y0:=1 nofails;
Y0:=0 nofails;

I036=1 I0O37=1 I038=0

Y0:=1 nofails;
Y0:=0 nofails;

I036=1 I037=1 I038=1

Y0:=1 nofails;
Y0:=0 nofails;

I036=1 I037=1 1038=1

Y0:=1 nofails;
Y0:=0 nofails;

I036=0 I037=0 I038=0

Y0:=1 nofails;
Y0:=0 nofails;

1039=0

I039=1

1039=0

I039=1

I039=0

1039=1

I039=0

1039=1

I039=0

I036=b’u I037=b’u IO38=b’'u
I00:=b’z IOl:=b’z I02:=b’'z
SDI_INO:=b’z MODE_INl:=b'z

writeln(‘Finished’);

anAd
ena

acd+ 111 .
€8T uvi;

(* END

I032=0;(*1000%*)

1032=0; (*1001%)

1032=0; (*1010%)

I032=0;(*1011%*)

1032=0; (*1100%)

1032=0; (*1101%)

1032=0; (*1110%)

I032=1;(*1111 + carry¥*)

I032=0; (*0000*)

I039=b’u I032=b’u

Y0:=b'z

RESETX:=b’'z ISPEN:=b’'z;

OF BURST *)

3-44

In-System Programmability Manual

ATE Programming of ISP Devices

Interfacing the ATE to the ISP Hardware

The ATE to ISP hardware interface will be different
depending on whether or not you are programming the
ISP devices in a daisy chain or parallel configuration.

Case 1 (Serial Programming): For programming mul-
tiple ISP devices sequentially in a daisy chain
configuration.

Figure 4. Serial (Daisy Chain) Programming

———SDI SDO SDI SDO SDI SDO

ISP ISP ISP

If case 1 and Figure 4 describe your ISP hardware
configuration, there is a single daisy chain interface to
which your tester must interface. All the ISP devices will
be programmed by the tester through this single 4- or 5-
signal interface referred to as the ISP interface. The
Lattice software utilities will be able to generate the
vectors required to program your hardware in this con-
figuration without modification.

Listing 4. Parallel Programming Algorithm for Test Vectors on ATE (For two ISP devices)

! SINGLE-PIN ASSIGNMENTS:

assign SCLKO to pins 1
assign SDIO to pins 2
assign SDOO to pins 3
assign MODEO to pins 4
assign ISPENO to pins 5
assign SCLK1 to pins 6
assign SDI1 to pins 7
assign SDO1 to pins 8
assign MODEl1 to pins 9
assign ISPEN1 to pins 10
...etc.

Then the type classifications must be modified, appending the numbered pins:

ITYPE CLASSIFICATIONS
nondigital UNUSED

SCLKO, SDIO,
SsD1,

inputs SDO0, MODEO,

ISPENO, SCLK1,
MODE1, ISPEN1, SCLK2,...etc.

Case 2 (Parallel Programming): For programming one
or more ISP devices in parallel.

Figure 5. Parallel Programming

— SDI SDOf—

ISP

—1 SDI SDO—

ISP

— SDI SDO—

ISP

If case 2 and Figure 5 describe your ISP configuration,
there are multiple ISP interfaces that you will want to
program at the same time. The Lattice software currently
does not support the automatic generation of paraliel
programming vectors for multiple ISP devices. This means
that to support parallel programming you will need to
provide a means to concatenate vectors from separate
files together into a single wide vector file. To do this,
write a text modification program that takes the test
vector file(s) for each ISP device and uniquely numbers
all occurrences of SCLK, SDI, SDO, MODE, and ISPEN.
Then, the single-pin assignments of all the files must be
concatenated and the pins must be incremented produc-
ing a list similar to Listing 4.

3-45

In-System Programmability Manual

ATE Programming of ISP Devices

Listing 4. Parallel Programming Algorithm for Test Vectors on ATE (continued)

pcf
"X0101X0101X0101X..."
"X0111X0111X0111X..."
...etc.

Programming and Verify Wait Times

Meeting the program and verify wait times is essential to
correctly program ISP devices. Since the means to
implement these delays may vary from tester to tester,
the vector generation utilities will simply insert a WAIT
statement in the test vectors wherever a wait is required,
followed by the amount of time in milliseconds that the
wait should take. It is the your responsibility to ensure
that your tester meets the time specified by the wait
statement.

Vector Cycle Times

You must ensure that the maximum clock rate, and data
setup and hold times are met during tester programming.
Some customers have found a 650 ns cycle time to meet
their needs, however this time should be used as a
guideline only.

Pulldowns on the MODE/SDI

Both the MODE and SDI pins have internal pull-ups. If
you allow these pins to float, you may find that the device
transitions into a programming mode, since the active
state of these signals is active high. It is recommended
that you use pulldowns to ensure that these pins are
pulled down to the inactive state.

sDo1,

outputs SDO0, SDO1, SDOZ2,...etc.
pcf order SDO0, ISPENO, MODEO, SCLKO, SDIO,
ISPEN1l, MODE1l, SCLK1l, SDI, SDO2,...etc.

Finally, the test vectors must be concatenated to the appropriate width:

The tester can then direct the parts of the wide vector to the appropriate ISP interface.

Calculating the Required Pulldown Value

Lattice's ISP devices have internal pull-ups with a value
of 50-70KQ. If you connect ISP devices in parallel, then
you must also take into account the fact that you are
putting these pull-ups in parallel, and therefore the effec-
tive pull-up value may be much smaller. Forexample, five
devices in parallel will give you an equivalent resistance
of 10KQ.

Maintaining ISP Interface Values

If you are using multiple files to program the ISP devices
due to a large number of vectors, you need to ensure that
the tester does not let the ISP interface float at any time
during the programming cycle. If you are processing
multiple modules, ensure that you maintain the last
vector value of a module until the next vector of the new
module is started.

3-46

In-System Programmability Manual

Third-Party
Programmers

Third-Party Programming Support

Lattice Semiconductor works with several industry-lead-
ing programming manufacturers to ensure that high
quality programming support is available for Lattice ISP
devices. Table 1 lists of the programming vendors ap-
proved to program the ispLSl, ispGAL, and ispGDS
devices. For the ispLSI devices, Lattice has worked with
third-party socket adapter vendors to provide program-
ming support for low-cost programmers, such as 28-pin
programmers. These adapters route the necessary pro-
gramming signals from the programmer to the devices
and use a standard 28-pin pinout.

Table 1. Qualified Programmers

Programmer Vendor Model

Pilot U-40
Pilot U-84
Pilot GL

Pilot GCE

Advin Systems

PLD 1128
CP-1128
BP-1200

BP Microsystems

2900
3900
Unisite

Data I/0

Logical Devices Allpro 40

Alipro 88

SMS Micro Systems Expert

Eclipse
ZL30A
ZL30B
System 3000
Quasar 1040
Quasar 1084

Stag

System General Turpro-1

Turpro-1/FX

When programming Lattice’s ispLSI devices, there are
two types of adapters you can use. First, you can use an
adapter supplied by the programming vendor. These
adapters make electrical connections to all pins and may
be capable of applying test vectors. Or, you can use a 28-
pin adapter from one of the manufacturers listed below.

* PROCON Technologies
* EDI Corporation

¢ Emulation Technology

When using 28-pin adapters, the correct algorithm must
be selected and specified with an asterisk (*). These
algorithms are listed in Table 2.

Table 2. 28-Pin Adapter Algorithms

pLSI 1016* ispLSI 1016*
pLSI 1024* ispLSI 1024*
pL;1 032+ ispLSI 1032
pLSI 1048* ispLSI 1048
pLSI 2032* ispLSI 2032
pLSI 3256* ispLSI 3256*

Third-Party Adapters

Table 3 lists universal socket adapters by Emulation
Technology, EDI Corporation, and PROCON Technolo-
gies that may be used to program Lattice’s ispLS| devices
with 28-pin programmers. These adapiers route the
necessary programming signals from the programmer to
the appropriate pins of the device using a 28-pin, .600 mil
socket.

3-47

In-System Programmability Manual

Third-Party Programmers

Table 3. Third-Party Adapters

Device Package Emulation EDI PROCON
Type Part Number Part Number Part Number
. _
ispLSI or pLSI 1016 44-PLCC AS-44-28-03P-6YAM (Hinged lid) 44PL/28D6-ZL-L1016 (Hinged lid) 325-044-1221-028L (Auto eject)
44PL/28D6-ZAL-L1016 (Auto eject)
44-TQFP L AS-44-28-01Q600 Not available Not available
ispLSI or pLSI 1024 68-PLCC AS-68-28-03P-6YAM (Hinged lid) 68PL/28D6-ZL-L1024 (Hinged lid) 325-068-1221-028L (Auto eject)
68PL/28D6-ZAL-L1024 (Auto eject)
ispLSI or pLSI 1032 84-PLCC AS-84-28-02P-6YAM (Hinged lid) 84PL/28D6-ZL-1.1032 (Hinged lid) 325-084-1221-028L (Auto eject)
84PL/28D6-ZAL-L1032 (Auto eject)
84-CPGA AS-84-28-01PG-6 Not available Not available
100-TQFP AS-100-28-01Q-3 (300 MIL) Not available Not available
AS-100-28-01Q-6 (600 MIL)
ispLSI or pLSI 1048 120-PQFP AS-120-28-01Q-6YAM (Hinged lid) 120QF/28D6-ZL-L1048 (Hinged lid) 325-120-1221-028L (Hinged lid)
ispLSl or pLSI 1048C | 128-PQFP AS-128-28-02Q-6YAM Not available Not available
133-CPGA AS-133-28-01PG-6 | Not available Not available
ispLSI or pLSI 2032 44-PLCC AS-44-28-03P-6YAM 44PL/28D6-ZL-L1016 (Hinged lid) 325-044-1221-028L (Auto eject)
44PL/28D6-ZAL-L1016 (Auto eject)
ispLSI or pLSI 3256 167-CPGA AS-167P10-28-6-pLSI3256 Not available Not available

On-board Programming Adapters

An alternative to programmer-based programming is
“on-board programming”, which is performed with an on-
board programming adapter. Using an interface board
and ribbon cable, the on-board programming adapter
routes the programming signals from a programmer to
the PC board (Figure 1). An interface header must be

included on the board to route the programming signals
to the device. The following adapters are currently avail-
able from PROCON Technology:

« ispLSI (Supports: ispLSI 1048C/1048/1032/1024/1016)

* ispGDS (Supports: ispGDS14/18/22)

* ispGAL22V10

Figure 1. The PROCON ispLSI On-board Programming Adapter routes the programming signals from a 28-pin
programmer to a header on the PC board.

On-Board Programming Interface Cable

<

Board

Connector

Vi

On-Board
Programming
Adapter Connector

Programmer _4
power LED

000

g'ooooooooogi
g
(2]

a

O%)OOO

Board
power LED

-

000000000

3-48

In-System Programmability Manual

Third-Party Programmers

Design Requirements

In order to program a device on-board, the board must be
designed with the following considerations:

* An 8-pin header must be included on the board to
connect the 8-pin ribbon cable.

* The normal programming signals, along with VCC
and GND, must be routed to an 8-pin header inter-
face. The signal definitions are provided below:

VCC (VCC Supply)

SDO (Serial Data Out)

SDI (Serial Data In)

iSpEN (ISP pin for ispLSI devices)
Plug (Plug-Alignment)

Mode (Mode control pin)

GND (GROUND Supply)

SCLK (Clock Driver)

To program a device on-board, insert the interface board
into the programmer and select the device. Connect the
ribbon cable from the programmer to the interface board.
The LED labeled “Board Power” will illuminate to show
that power is applied to the board and the cable is
properly connected. Download the JEDEC file to the

programmer and program the device. The LED labeled
“Programmer Power” will illuminate when the program-
mer applies power to the socket. A design example is
shown in Figure 2.

Device PROCON Part Numbers
ispLSI 325-isp-1221-028L
ispGDS 325-GDS-1221-028L
ispGAL22V10 325-GAL-1221-028L

On-board Programming Adapters

Muitiple Devices

To program multiple devices on-board using the On-
board Programming scheme, two design approaches
may be used:

1. Include Multiple interface headers to program each
individual device.

2. Include a rotary switch or DIP switch on the board to
select the device to program. If all of the devices are
ispLSl devices, then the ispEN control signal will serve to
select which device is programmed. The number of
devices that are programmed determines the number of
rotary/DIP switches required. A design example is shown
in Figure 3.

Figure 2. Programming a single ispLSI device on-board using a PROCON adapter. The programming signals
are routed to a header connector onthe PC board which is then connected to the Interface Cable of the adapter.

PC Board Example
ispLSI devices only

Pi Vi PC tr>1oard

interface

| SDOUT SDOUT O header.

SDIN —SOIN

iSpEN iSpEN o Cton[rr]‘ecl

. o the
ispLSI 1032 PG 5 onBoar

r___”&QE_o Programming
| MODE «—PCboardGND _~ Interface
[SCLK SCLK o Cable.

3-49

In-System Programmability Manual

Third-Party Programmers

Figure 3. Programming ispLSI devices on-board using a PROCON adapter. The PROCON
adapter routes the programming signals from a universal programmer to the PC board.

PC Board Example
| sbouT ispLSI devices only
ispLSI f‘im-—“ﬂ
R v e—
SROUT
ispLSI JA&EEE[
1016 | -MODE
)
P i PC Erlfoard
soour S0 e
% i Connect
|iSDEN /_m__o . 'oBmed
ISpLSl 1032 MODE o ProSrar?%mg
| MoDE [. PCRoardGND =~ Interface
[ScLK SCLK Cable.
DIP switch or
Rotary switch
mounted on the
PC board

On-board Programming Adapters
Mixed ISP Devices

When programming multiple devices on-board using the
on-board programming adapter, two switches are re-
quired to select the device to program. In Figure 4, all of
the SDOUT pins are connected together, which stipu-
lates that only one device may be enabled at a time. If

ispLSI devices are mixed with either the ispGAL22V10 or
ispGDS devices then both ispEN and MODE must be
used as control signals to select each device to program.
ispEN will enable and select the appropriate ispLSI
device, and MODE will enable and select the desired
ispGAL22V10 or ispGDS device. Table 4 reviews the

switches required for common on-board programming
nes required for commeon on pr ning.

Loard Qgrany!

Table 4. Switches Required for Common On-Board Programming

Configuration

Switches

ispLSI 1016 & ispGDS14 1.

Switch ispEN to enable the ispLSI devices.
2. Switch MODE to enable or disable the ispGDS14.

ispLSI 1016, ispLSI 1032, & ispGAL22V10 | 1.

Switch ispEN to select one of the ispLSI devices T
or to open the ispGAL22V10.
2. Switch MODE to enable or disable the ispGAL22V10.

ispLSI 1016, ispLSI 1032, ispGDS22, 1.
& ispGAL22V10

Switch ispEN to select one of the ispGAL22V10
and the ispLSI devices.

2. Switch MODE to enable and select either the
ispGAL22V10 or the ispGDS22.

3-50

In-System Programmability Manual

Third-Party Programmers

Figure 4. In-System Programming with either an ispGAL22V10 or ispGDS device on-board using a PROCON
adapter to route the programming signals from a universal programmer to the PC board.

PC Board Example
QUT ispLSI & ispGAL22V10
|SOIN devices
ispGAL22V10 "
| MODE
| SDOUT
|_SOIN
ispGAL22V10
P |_MODE
SCLK
B PC board
HSDOUT SDOUT —o0 interface
| SOIN SDIN o header.
foEN -~ ';mm o Connect
ispLSI 1032 _MODE 0 oneed
| MODE_ — «—PChoard GND _J Programming
SCLK SCLK ° In ear:)?ece
DIP Switch or
Rotary Switch
Mounted on the
C Board
T
SDIN
|iSDEN
ispLSI 1032
| MODE
ISCLK |

3-51 In-System Programmability Manual

Third-Party Programmers

Programming and Adapter Vendors

Advin Systems

1050-L East Duane Ave
Sunnyvale, CA 94086
Tel: (408) 243-7000
FAX: (408) 736-2503

BP Microsystems

1000 N Post Oak Road
Houston, TX 77055-7237
Tel: (713) 688-4600
1-800-225-2102

FAX: (713) 688-0902
BBS: (713) 688-9283

Data I/O Corp.

10525 Willows Road
P.O. Box 97046
Redmond, WA 98073-9746
Tel: 1-800-426-1045
1-800-247-5700

FAX: (206) 882-1043
Data I/O Corp.

Tel: 31 (0) 20-6622866
In Japan contact:

Data I/O Corp.

Tel: (03) 432-6991

EDI Corporation
P.O. Box 366
Patterson, CA 95363
Tel: (209) 892-3270
Fax: (209) 892-3610

Emulation Technology
2344 Walsh Ave, Bldg F
Santa Clara, CA 95051
Tel: (408) 982-0660
Fax: (408) 982-0664

PROCON Technology, Inc

1333 Lawrence Expwy, Suite 207
Santa Clara, CA 95051

Tel: (408) 246-4456

Fax: (408) 246-4435

Logical Devices, Inc.

692 South Military Trail
Deerfield Beach, FL 33442
Tel: (305) 428-6868

FAX: (305) 428-1811

SMS Microcomputer

Im Grund 15

D-88239 Wangen
Germany

Tel: (49) 7522-9728-21
FAX: (49) 7522-9728-50
In the U.S. contact:

SMS North America, Inc.
17411 NE Union Hill Road, Suite 100
N.E. Redmond, WA 98052
Tel: (206) 883-8447

FAX: (206) 883-8601

Stag Programmers, Ltd.
In Europe contact:

Silver Court, Watchmead
Welwyn Garden City
Herts, England AL7 1LT
United Kingdom

Tel: 011-44-707-332148
FAX: 011-44-707-371503
In the U.S. contact:

Stag Microsystems

1600 Wyatt Dr., Suite 3
Santa Clara, CA 95054
Tel: 1-800-227-8836

Tel: (408) 988-1118

FAX: (408) 988-1232

System General Corp.
3F, No. 1, Alley 8, Lane 45
Bao Shing Road

Shin Dian

Taipei, Taiwan R.O.C.
Tel: 886-2- 9173005
FAX: 886-2- 9111283

In the U.S. contact:
System General Corp.
1603A South Main Street
Milpitas, CA 95035

Tel: (408) 263-6667
FAX: (408) 262-9220

In-System Programmability Manual

Section 1: ISP Overview

Section 2: The Basics of ISP

Section 3: ISP Programming Options

Section 4: Application Notes and Article Reprints

Selecting the Best Device for In-System Programmabilitycocerirenrririeeeciieneens 4-1
In-System Programmable Logic in High Volume Manufacturingccceeeervencrneennns 4-7
ispLSI Configurable Memory CONroOllErc.oiuieiiiieiiieie ettt 4-15
Lattice Bulletin Board SYStEMScccceveiieiiiiiiiiece ettt 4-31

Section 5: General Information

Index

Selecting the Best Device for
In-System Programmability

This article is reprinted from Computer Design’s ASIC Design — December 1993.

4-1

{ESIGN SOLUTIONS

Selecting the best device for
in-System programmaility

Familiarity with the technologies, as well
as the benefits and drawbacks involved
with each, will help you choose the
in-system-programmable complex PLD or
FPGA that best suits your design needs.

In developing an HDTV interface,
David Harper, a senior design en-
gineer at Convex Computer, faced a
problem very common in leading-
edge electronics companies: The in-
dustry standards were not yet com-
plete, but product development had
to go on. His interface board had to
connect a Convex /0 channel to the
emerging industry-standard frame-
buffer format in the infant HDTV elec-
tronics market. But two different
frame-buffer formats were contend-
ing for industry leadership, and it
wasn’t clear which format would
emerge as the dominant standard.

Harper needed to design a system
that could accommodate either one,
or possibly both, frame-buffer stand-
ards. By populating the interface cir-
cuit board with several Lattice ispLSI
high-density PLDs, Harper designed a
product that could be configured to
conform to either frame-buffer speci-
fication after the logic devices were
soldered onto the circuit board. This
in-system programmability led to a
product with a wider addressable
market. as well as lowering design
and production costs for Convex.
because a single piece of hardware
could be programmed for two differ-
ent products.

The ability to design one product
for multiple uses is perhaps the most

exotic benefit of in-system-program-
mable technology, but it isn’t the
only one. Designing in-system-pro-
grammable devices into a product
can improve productivity and reduce
costs across the life cycle of a prod-
uct: engineering, production, mainte-
nance, and in-field upgrades.

Why in-system programmability?

The first PLD programming technol-
ogy, dating from the early days of the

Furthermore, manufacturing person-
nel had to execute a programming
step in product manufacturing prior
to assembly.

As programmable devices now
hurdle the 10,000-gate barrier, how-
ever, they incorporate many more /O
pins and are manufactured in very
fine pin-pitch plastic quad flat packs
and thin quad flat packs. As a result,
they’re increasingly delicate and
intolerant to the manual program-
ming techniques previously used
with older packages. Moreover, sock-
ets can reduce the signal integrity of
the programmable device and intro-
duce handling and inventory steps
that often compromise end-product
quality as well as add extra cost.

With an in-system programmable
device, on the other hand, the pro-
gramming pattern can be changed at
any time by applying signals to the
programming pins of the in-system
programmable device. This program-
ming can even be performed after the
device is soldered onto the board if
the engineer has made an accommo-
dation for the programming inter-
face. This very simple change in the
programming step means that design-

Evolution of programming technology

19708 EARLY 1980s 1980s, 19908 19608,
218t CENTURY
DEVICE 2 E2 CMOS
Lot L BIPOLAR H UV EPROM H £ CMOS‘H AND S
PROGRAM IN-SYSTEM
i £’Y‘° SOCKETING AND PROGRAMMER REQUIRED ﬂ PROGRAMMABLE

As PLDs have migrated from bipolar one-time-programmable technology to UV
EPROM and E-CMOS, engineers have had to maintain device sockets and a separate
programming step in manufacturing. But in-system-programmable technology does

away with all that.

bipolar PAL, programmed tiny fuses
on a PLD using a standalone device
programmer. As PLDs migrated
through subsequent technologies—
notably UV EPROM and EXCMOS—
engineers continued to rely upon a
standalone programming step to load
the logic into each device. As a
result, engineers would add sockets
for the PLDs to their circuit boards in
case design changes required new
PLDs to be programmed and inserted.

ers don’t need to add sockets to have
reprogrammability. Nor is a program-
mer needed. Moreover, in-system
programmability makes possible a
new way of organizing and execut-
ing product development for higher
productivity and lower costs.

Selection criteria to consider
To select an in-system-programma-

ble device. you must consider several
factors before committing large finan-

DECEMBER 1993 Computer Design's ASIC DESIGN A29

4-2

In-gystem programmaiiy

cial and engineering resources to a
particular technology or architecture.
The most fundamental criterion is
process technology.

Today's high-density, programma-
ble-logic market offers four basic
storage technologies: antifuse, UV
EPROM, SRAM and EZCMOS.
Although most devices use one of
these four technologies exclusively,
a few offer a hybrid approach, using
SRAM for the logic and EPROM for
power-off storage. Of the four basic

configuration when system power is
turned off. Every time the system is
powered up. the programming pat-
tern must be transferred from an
external memory device into the
SRAM in-system-programmable
devices. This creates two key difficul-
ties. First, the SRAM-based devices
require a power-up delay to allow
time to load the data from the EPROM
device into the SRAM logic cells. Sec-
ond, additional chips and valuable
board real estate are required. Some

&

ble devices, comp

can bypass separate program-

Using in-s

stem-progr

ming, marking, and inventory steps, thereby simplifving the manufacturing flow.

technologies, only SRAM and
E2CMOS offer in-system programma-
bility. Of the devices manufactured
using these two technologies, not all
incorporate in-system-programmable
interfaces.

The significant advantage of
SRAM devices is that they may be
reprogrammed on the fly an almost
unlimited number of times. This fea-
ture makes SRAM a desirable technol-
ogy for applications that require con-
tinual updates or dynamic-reprogram-
ming capability.

The main drawback of SRAM-
based devices, on the other hand, is
their volatility. SRAM in-system-pro-
grammable devices lose their logic

manufacturers have attempted to
eliminate the effect of the second lim-
itation by including the EPROM as
part of the device. Although these
drawbacks do not always present a
serious problem, they eliminate
SRAM in-system-programmable
devices from consideration in appli-
cations requiring fully functional
logic at power-up. Examples include a
memory decoder for a CPU that must
be operational at CPU power-up and
applications where board real estate
carries a particularly high premium.
The second key in-system-pro-
grammable technology. E2CMOS, is
non-volatile and electrically erasable
within milliseconds. Because there is

no need for a memory chip to load
the logic at each power up, the
E2CMOS solution requires no support
circuitry, saving critical real estate.
E2CMOS devices may be repro-
grammed up to 1,000 times, which is
sufficient for virtually all in-system-
programmable applications except
those requiring dynamic or continu-
ous reprogramming.

After device technology. you need
to consider programming require-
ments. Some in-system-programma-
ble devices require a special 12 to 14-
V supply to program the device. A
board with such devices must incor-
porate extra control circuitry and
must provide this special voltage
with an extra power supply such as a
de-to-dc converter. These require-
ments add up to lost board space
with lower reliability, higher power
consumption and, ultimately, higher
design costs. Other in-system-pro-
grammable devices in both SRAM
and E2CMOS technologies use a stand-
ard 5-V logic supply voltage for pro-
gramming and reprogramming. This
key feature will ultimately lower
system design costs and power con-
sumption.

Programming interface options

The next consideration is the simplic-
ity of the programming interface. A
simple programming interface con-
serves board real estate and mini-
mizes layout complexity and design
costs compared to complex connec-
tors or programming pad configura-
tions. The key distinction you should
consider is whether the interface is
serial or parallel. Parallel program-
ming options require extra layout
resources for running interface sig-
nals across the board. These extra
resources inevitably lead to higher
design costs. In-system-programma-
ble devices with serial interfaces usu-
ally require far fewer interface
signals, making them more reliable
and cost-effective, as well as easier
to design into the system. Serial-inter-
face in-system-programmable
devices are available in both SRAM
and E"CMOS technologies.

The final consideration concerns
the use of in-system-programmable
devices as test resources. If test capa-
bilities are a critical design consider-
ation, you should look for devices
with interfaces compatible with the
IEEE 1149.1 boundary-scan standard.

A30 Computer Design’s ASIC DESISN DECEMBER 1993

4-3

In the optimal boundary-scan, in-sys-
tem-programmable solution, the in-
system-programmable and boundary-
scan signals share the same dedicated
pins. This enables a single interface
and the use of identical pins to imple-
ment both board test and device
reconfiguration.

The need for boundary scan is
becoming ever more evident as more
components per square inch are
packed onto every board. Boundary
scan significantly increases test cov-
erage for design errors at the board-
test level before they become expen-
sive system-level test problems.
Using an in-system-programmable
device that isn’t compliant with
boundary scan offsets this advantage,
increasing the risk of higher product-
failure rates due to poor testability.

Candidate applications

As systems become denser and more
highly integrated, in-system program-
mability becomes a more critical
technology. This is because program-
mable-logic die is less accessible,
making conventional programmer
technology inefficient. This situation
is especially true for multi-chip mod-
ules (MCMsy).

In-system programmability offers
advantages for many design and sys-
tem challenges, but not all. This tech-
nology is usually not appropriate for
extremely high-volume or very cost-
sensitive designs because even the
minimal additional costs associated
with in-system-programmable board
overhead may become prohibitive.
Products in the early stages of their
life cycles, including high-volume
applications, are excellent candidates
for in-system-programmable devices
because they often need numerous
changes before they are committed to
inflexible ASIC chip sets, for exam-
ple. A large percentage of new
designs can benefit from in-system
programmability in production, field
upgrades, and generic functionality.
And engineers are continually find-
ing more innovative uses for in-sys-
tem-programmable devices.

More mature products that do not
need to be changed during manufac-
turing or in the field, or only serve
one function, however, may not need
the benefits that in-system-program-
mable devices offer because by their
very nature they do not require many
engineering change orders.

Multi-chip module packaging has
perhaps the most critical need for in-
system programmability. As demon-
strated earlier, in-system programma-
bility streamlines design processes
using delicate fine-lead packaging
and increasingly dense circuit
boards. It also contributes to a more
complete test strategy. With the
higher integration and intricacies of
MCMs, each of these advantages
becomes more significant. Conven-
tional non-in-system-programmable
technologies require the die to be
removed from the module, a practice
that often damages the MCM. With in-
system programmability this problem
is nonexistent.

Test is another point of contention
with MCMs as the modules cannot be
tested with conventional techniques.
Using an in-system-programmable

greatly reduce the design/debug
cycle as well as prototype-develop-
ment time. In a normal design cycle,
an engineer generally designs the cir-
cuit, has a circuit board built, and
begins debugging the board. In most
circuits, the engineer corrects the
inevitable errors and implements
specification and design changes by
physically removing socketed PLDs
and inserting updated versions. He
may have to modify the circuit
board’s traces and layout to
accommodate resulting design and
pinout changes.

When using in-system-program-
mable devices, design changes that
previously took a half day of cuts
and jumpers on the prototype board
take just minutes. You make changes
to the logic equations within the PLD
and send the new programming to

Programmable logic parts with in-system programming capabilities continue to grow

in popularity as more board designs adopt PQFP. TQFP and other fine-lead pack-
ages. Frank Morris, Valerie Young and Brian Reilly implemented the logic on NEC
America’s digital loop carrier board with four in-system programmable devices from
Lattice to ensure lead conformance and overall product quality.

design strategy that incorporates
boundary scan will enable almost full
testability of an MCM. The designer
may fully develop the MCM package
and attach the die before the design
is fully tested. When errors are
found, the design can be repro-
grammed inside the MCM with a very
short turn-around time.

Optimized development cycle

The use of in-system-programmable
devices in the engineering lab can

the PLD on the circuit board through
the programming interface. This
quick design-turnaround time can
save you days to weeks within a
development schedule.

Since in-system-programmable
devices eliminate the need for pro-
totyping sockets, there’s no need to
redesign the prototype board for pro-
duction. Because the prototype and
production boards may be identical.
their capacitance and inductance.
and, therefore, their ac performance,

DECEMBER 1993 Computer Design's ASKG A31

In-gystem programmability

may also be identical. This elimi-
nates unpleasant surprises in product
performance when the first produc-
tion units are manufactured.

The opening Convex example
points out another benefit: A single
circuit board may be designed for
multiple uses. This technique is also
known as reconfigurable hardware.
With reconfigurable hardware, an
engineer can design and build a prod-
uct and then reconfigure it to
accommodate any number of indus-
try standards or product features. A

simplified manufacturing flow, lead-
ing to higher quality and more accu-
rate prototypes. First, as thin quad
flat packs, plastic quad flat packs and
other fragile chip packaging gain in
popularity, manufacturing and assem-
bly of circuit boards with sockets can
become a serious quality-control
problem. The additional handling
steps for programming often leads to
bent pins and lower part-utilization
rates. With an in-system-programma-
ble design strategy. inventory hassles
are significantly reduced because the

generic PC card could be customized,
for instance, to work with different
network protocols.

Optimized production flow

Using typical PLDs, the production
flow consists of taking blank parts
from inventory. programming and
marking them, sending each part
back to inventory with a specific part
number, then pulling the appropriate
part number as needed to assemble
the production cards. Programming a
high-pin-count PLD is problematic
because its fine pin pitch makes it
incompatible with automatic pro-
grammer handlers. Consequently,
production personnel must program
all conventional high-density PLD
devices manually. An operator has to
place and remove each device from
the socket on the programmer, a task
that's very difficult to accomplish
without severely bending the fine
leads or destroying lead coplanarity.
A product using in-system-pro-
grammable devices enjoys a much

parts go directly from the receiving
dock to placement on the printed cir-
cuit board, eliminating the stand-
alone programming and mark opera-
tion entirely. In addition, multiple,
blank in-system-programmable
devices can be loaded into auto-inser-
tion equipment and placed directly
onto the board without sockets and
without regard for which pattern
goes into a particular board location.
During final circuit-board test, the
individual logic patterns are pro-
grammed into each device using the
board-test station via the simple in-
system-programmable programming
interface.

Many products also require field
upgrades to maintain their accuracy
or to update their functionality.
Instrumentation equipment is a good
example because it often requires
recalibration over a period of months
or years to maintain accuracy and
precision. With in-system-program-
mable parts embedded in the system
and an appropriate interface to the

programming pins, a field-service
technician or even a customer can
upgrade a product’s hardware as eas-
ily as software upgrades are distrib-
uted today.

System reliability issues

Socketing of programmable devices
can be a consistent source of system-
reliability problems. By removing
sockets from the circuit board and
soldering an in-system-programma-
ble device directly onto the board,
the signal integrity of the leads isn’t
compromised by the socket connec-
tions. In addition, properly soldered
joints are much more reliable than
socket connections. These benefits
result in greater system performance
and overall reliability in terms of
MTBF.

The use of in-system-programma-
ble devices also lets the test engineer
develop more flexible circuit-board-
test procedures. For example, a test
engineer can program in-system-pro-
grammable devices to interconnect
the circuit-board traces and so
achieve nearly full fault coverage of
those traces. He or she can then
quickly reconfigure the in-system-
programmable devices to generate
test signals for exercising dedicated
logic devices on the board. By doing
$0. test engineers can significantly
enhance the fault coverage of the
board and the speed of tests. After
board test, the test engineer can pro-
gram the final logic patterns into the
in-system-programmable devices.

Design engineers can use in-sys-
tem-programmable devices to design
boards with programmable configura-
tion options, instead of dip switches
or component swapping. This multi-
ple-configuration approach can
greatly improve system-level perfor-
mance and reliability by reducing
device counts, eliminating the need
for sockets and improving testability.

The Lattice isp solution

After considering in-system program-
mable benefits, you can evaluate vari-
ous device families for features that
match their system requirements. Lat-
tice Semiconductor, for example,
fields three in-system-programmable
LSI (ispLSI) device families Qased on
the company’s proprietary E°CMOS
technology: the flagship ispLSI 1000
family and the recently announced
ispLSI 2000 and ispLSI 3000 families.

A32 Computer Design’s KSIG DECEMBER 1993

4-5

In-system programmability

The ispLSI 1000 family, introduced in
1991, was the first available EZCMOS
in-system-programmable solution on
the market to offer 2,000 to 8.000
gates and up to 110-MHz speed. The
ispLS1 2000 family expanded upon the
ispLSI 1000 family architecture to
deliver speeds of up to 135 MHz.
The ispLSI 3000 family offers device
densities of up to 14,000 gates with
110-MHz speed and IEEE 1149.1
boundary-scan test capabilities.

The Lattice ispLSI devices follow
a simple reprogramming scheme.
Five pins are dedicated to in-system
programming: serial data in (SDI).

The ability to design
one product for multiple
uses is perhaps the
most exotic benefit of
in-system-programmable
technology, but it isn’t
the only one. Designing
in-system-programmable
devices into a product can
improve productivity and
reduce costs across the life
cycle of a product.

serial data out (SDO), mode control
(Mode). serial clock (SCLK) and isp
enable (iSpEN). During the repro-
gramming operation, iSpEN is
asserted low, the four remaining
ispLSI pins become active, and all
other output pins become three-
stated to prevent any bus contention
during the reprogramming cycle. The
programming of the device is then
controlled by an internal state
machine that’s operated by using the
SDI and Mode pins. You would use
the design software provided by Lat-
tice on a workstation or PC to serially
load a 5-bit command into the
device. followed by the design file in
JEDEC format. all using a 5-V repro-
gramming voltage. Lattice also offers
a software routine called ispCODE
which gives you pre-written working
C routines that can be incorporated
in a system processor as part of the
working system code.

Lattice™s ispL.SI 3000 family of
devices share the isp programming
signals with the standard boundary-
scan signals, enabling the same inter-
face to do both board test and logic
reconfiguration.

An isp design example

Brian Reilly of NEC America (Hills-
boro, OR) found an application that
may not have been completed with-
out ispLSI devices. Reilly’s task was
to design new circuit boards for an
NEC digital loop carrier that accepts
96 phone pairs and digitally com-
presses them down to eight pairs.
The boards were to be part of the sys-
tem’s common control unit and con-
sisted of a 68020-based control CPU
board and a custom high-capacity,
serial-interface board. NEC encoun-
tered a set of engineering problems:
trying to successfully implement the
functional requirements which
included the need for non-volatility,
maximizing the amount of logic in
the smallest amount of board real
estate, minimizing board- and sys-
tem-test costs, maintaining high prod-
uct reliability and minimizing board
rework caused by engineering
change orders.

While all these constraints pointed
to in-system programmability, the cri-
terion that made in-system program-
mability unavoidable was the need
for NEC to start building the hard-
ware before the logic was fully
designed. By implementing the
design with Lattice ispLSI devices.
NEC was able to meet a very tight
product-development cycle, one
which would have been impossible
without an in-system-programmable
strategy. Board layout was finished,
and assembly took place weeks
before the final logic was completed
and implemented into the devices.
Looking back on the experience,
Reilly says. “The ability to change
the logic on the board really saved
our bacon.” 71

A34 Computer Design's ASIC DESIBN DECEMBER 993

In-System Programmable Logic in
High Volume Manufacturing

This paper was presented at the 1993 PLD Design Conference and Exhibit in Santa Clara, California and
appeared in the Conference Proceedings, Track 2.

4-7

1.2.2.A

In System Programmable Logic in High Volume Manufacturing

Introduction

With systems and PC boards continuing to decrease in
size with increased logic functionality, combined with
the high integration levels of today's logic devices,
there has never been greater pressure on board level
testability. Traditional board test methodologies are no
longer adequate for today's highly integrated systems.
Several 1C manufactures are attempting to address this
problem by supplying devices which actually aid the
test engineer in their testing of the board.

The challenge for today’s design and test engineers is
to design in a comprehensive board test methodology
while at the same time reduce the cost of test fixturing.
As the PC board becomes more and more complex it
becomes harder and more expensive to have a bed of
nails test to test each portion of the logic on the board.

Help comes from an unlikely source, In-system
programmable logic or ISP HDPLDs. In system
programmable logic can aid in virtually every stage of
the product design and manufacturing cycle, up to and
including installation at the customer. However this
paper will focus specifically on the high volume
manufacturing and testability areas.

In System Programmability (ISP), the ability to
program and reprogram logic devices while "in-
system”. This concept is being pioneered primarily
with High-Density PLDs (hereafter referred to
collectively as HDPLDs).

ISP is revolutionizing the system designs of the 90's.
ISP is an enabling technology that allows designers to
define and develop systems with capabilities previously
unachievable. With ISP technology, Virtual Hardware,
the concept of hardware as flexible and easy to modify
as software, becomes a reality. Hardware functions can
be programmed and modified real time to expand
product features, shorten system design and debug,
simplify field upgrades, and perhaps most importantly,
enhance product testability.

Technology Overview

The HDPLDs available on the market today can be
categorized into four different and distinct CMOS
technologies; Anti-fuse, SRAM, EPROM (UVCMOS)

and E2PROM (E2CMOS). Of these four technologies.
only three offer reprogrammability.

Of the three reprogrammable CMOS technologies, only
SRAM and E2ZCMOS provide in-system
reprogrammability. UVCMOS can only be
reprogrammed after the device has been erased by
exposure to UV light (up to 20 minutes erasure time).
The following manufactures offer in-system
reprogrammability: Lattice Xilinx, AT&T and
Concurrent.

In-system programmable and reprogrammable devices
can be programmed, erased and reprogrammed while
soldered directly to the printed circuit board (PCB).
The actual implementation of ISP defers slightly
between manufactures but the major concepts are the
same. In circuit reprogrammable logic devices program
and reprogram using a single 5 Vdc supply and either
a serial or parallel programming interface for the
loading and programming of binary bit patterns
(JEDEC files). Conversely standard programmable
logic devices require a super voltage (typically over 12
volts) to be applied to program and erase.

Reconfigurability for Test
Testability

Device board level testability is becoming the limiting
factor in the high-tech manufacturing arena, the
success or failure of a state-of-the-art product often
depends upon the time required to build that product.
In the case of products incorporating dedicated
microprocessors, data transmission circuitry, or other
complex electronic hardware, most of the time-to-build
is consumed by testing and integration.

Advances in packaging technology have allowed the
development of smaller and more dependable carriers,
and have facilitated the onset of extremely high
density, "lights-out”, automated manufacturing.
Advances in a number of interrelated areas (such as IR
soldering, pick-and-place, adhesives, sensor
technology,etc.) have opened the way to high density
assembly techniques that would have been considered
impossible only a few years ago. Although not
commonplace, some size and/or weight critical

4-8

1.2.2.A

products are currently built using a number of unique
bulk-reducing construction techniques. Assembly
processes which effect double-sided surface mount,
chip-and-wire with epoxy cover, dense pack SIPs, or
sandwich-mounted flat-packs are all valid means of
producing a smaller, lighter, and more reliable final
product. Unfortunately, highly advanced high density
products are, at best, painfully difficult to test, and can
be utterly impractical to repair.

In the manufacturing environment, where replacement
parts, known good (golden) prototypes, and
sophisticated test equipment are available, the major
bottleneck to testing is related to circuit access. Quite
simply, many device packages and the boards or sub-
assemblies in which these packages are incorporated
have few to no internal access paths. This is due. in
some cases, to the density and placement of device-to-
board interconnects (i.¢., adjacent, stacked, double-
sided. sandwiched, or epoxied surface mount...). In
other cases it can be a result of package pin-count
limitations (de-rated LCC,PLCC, pin-grid. or ceramic
hybrid packages...). In rare instances, it can even be
due to manufacturing or marketing concerns (sync,
async, or mixced state machines with secured control
patterns and/or "trap” states...). It becomes literally
impractical to attempt to drive or receive test signals to
or from a unit under test (UUT) from any physical
location other than the designed-in system-level
contact points.

This situation often renders externally applied test
solutions inefficient or unreliable. The consequences, to
automated test. are clear. Feedback loops cannot be
eliminated. Test (stimulus) vectors cannot be inserted.
Response vectors cannot be captured. Digital logic
"lumps” cannot be simplified. State machines cannot
be reduced. Asynchronous control paths cannot be
opened or manipulated. By default, the product or sub-
assembly will be verified via some form of BIST (built-
in self test) or functional (power-up) diagnostics or
may not be tested at all. BIST, even when implemented
during the early stages of a design, it is expensive in
terms of design time, real estate, and parts count.
Functional diagnostics (F-diags), at either the system
or sub-assembly level, are expensive in terms of
development and support. Non-test is expensive in
terms of raw yield. None of these solutions are either
comprehensive or comfortable. As circuit complexity
continues to increase, driven by the synergetic
advances in electronic technology mentioned above,
the bottleneck(s) associated with high volume
manufacture cannot but worsen. Existing approaches to
BIST, DFT (Design For Test), and F-diags, will

4-9

become more expensive and less effective. Current
UUT access techniques will become more costly and
less reliable. Only a radical departure from traditional
automated test practices and procedures will be able to
provide a cost effective solution to tomorrow's test,
diagnostic, and verification challenges.

Help comes to the test and manufacturing community
from an unlikely source, in system programmable high
density logic devices. The ISP approach to BIST was
to add serial networking capability to the PCB. With
the addition of ISP HDPLDs, independent synchronous
serial port capability can help uncover hidden logic.
The result is an entirely new approach to testability,
RFT (Reconfiguration For Test). Like the JTAG-
MSDS 4-wire serial interface (a.k.a. IEEE P1149.1
proposal), the ISP protocol defines a clock input, a
serial data input, a mode/control input, and a serial
data output.

The serial output of one device can be connected to the
serial data input of another, thus allowing an unlimited

number of devices to be cascaded.
Enable
| Eneble
[Enable
R AFT-TY o
Control]
Ciroulwry - . wr
200 SDOUT| SDOUT|

(NOTE: The ISP serial communication protocol is
NOT JTAG-MSDS compatible! ISP devices do not
incorporate compliant JTAG-MSDS instruction, data,
or identification registers.) Also like the JTAG-MSDS
4-wire serial interface, the ISP protocol can be
visualized as an on-board, synchronous, serial FIFO
(First-In, First-Out), ring style, local-area-network for
devices. An off-board host (or communication master)
can communicate with any device on the ring by noting
its’ relative position and by appropriately transmitting
data through the FIFO loop. An ISP device can be
completely erased,completely examined, and
completely repatterned via the ISP protocol. No
unusual voltages or control signals (beyond the signals
necessary to exercise the FIFO) are required.

All the voltage/current sources, timing control
circuitry, pulse generators, and algorithmic state

generators are built into the device itself (EECMOS).
This capability allows ISP based hardware to be
modified. or reconfigured. at any point in the life cycle
of any given unit or sub-assembly. Thus an extremely
complex circuit, composed of interlocked state
machines of different types, can be reconfigured into a
simpler. more easily tested, configuration. In the
factory, feedback loops can be re-routed or eliminated.
Latches and/or memory elements can be reduced or
isolated. Signal paths into the core of an inaccessible
“lump” of hardware can be opened. Test vectors can be
introduced without back-drive. In brief, all of the
testability problems associated with HDPLD based
designs which include feedback or asynchronous
paths.can be addressed without the need for physical
access 1o an implementation

How ISP can solve potential test problems, let us look
at the manufacturing needs of a large-volume,medium
scale. high speed digital logic design. For the sake of
argument.we will assume that all DFT (design for
testability) SSI and MSI functions have been
implemented using ISP HDPLD devices. This means
that all the ATE/ATP (automatic test
equipment/automatic test procedure) defeating nuances
of a typical small to medium scale logic design can be
circumvented. We will further assume that this is a
consumer application, and that in-system logic
reconfiguration. ficld service access, and design
security are not an issuc. This means that the ISP
protocol interface(s) can be brought to a spring pin
(pogo-pin) compatible pad array on the board or
substrate. and that electrical access can be achieved via
a typical vacuum or clamp type fixture. To be brief. we
will describe the design application as a "board”. In
reality this application could as well be any type of
module or assembly incorporating logic devices.

With any PCB or circuit assembly there is a
quantifiable level of testability that is achievable,
which is dependent on the complexity of the board
design.

In an attempt to quantify this uncertainty, a board is
typically assigned a "fault-coverage” rating. Good
(highly testable) boards are rated at 70% to 99%. Bad
(difficult to test) boards are rated at 70% and under.
The rating is usually described as "stuck-at fault
coverage”. This is due to the theory that any function-
inhibiting failure can be traced to a "stuck” node or
equivalent. Given enough time and effort. anything
can be tested well. The reason many boards receive a
low fault-coverage rating is because:

4-10

1.2.2.A

(1) The resources necessary to improve the rating by
creating a better test exceed the anticipated savings
which will be realized throughout the product's life
cycle by repairing defective boards identified by the
better test.

(2) The resources necessary to perform an improved
test on a given lot of boards exceeds the anticipated
savings which will be realized by repairing defective
boards identified by the improved test.

NOTE.: This analysis often does not include the cost to
salvage defective boards identified by the customer or
by the end-user.

Boards which fail in service must ofien be replaced or
repaired at any cost. Thus, in the case of an unusually
long product life cycle, there may be ongoing and
increasing pressure to improve the fault-coverage of a
given board or sub-assembly due to a high field failure
rate. Statistically, the logic circuit configurations
which most often cause a loss of confidence in the
functionality of a new-board are typified in the
implementation of a multiple-device state-machine.

The design function of an ISP device is to permit the
device to be repeatedly reprogrammed, via the
programming interface, after permanent installation.
This provides two important secondary capabilities
which, as a side-effect, eliminate the loss of confidence
which HDPLDs, programmed and arranged as
multiple-device state-machines, normally introduce
into a logic design. Essentially, any multiple-device
state-machine, or any logic circuit which incorporates
DFT violations normally associated with a multiple-
device state-machine, can be effectively tested if the
components have an ISP compatible interface.

ISP HDPLD:s have the capability of being externally
interconnected (SDOUT to SDIN). This allows the ISP
device to be configured in a serial cascadeable
arrangement. The ISP "daisy chain" allows all ISP
compatible devices to be verified independent of the
function or placement of any given device. The ISP
protocol interface is a very sampie, low speed,
synchronousring. which can be quickly and easily
verified by ATE or by entry-level test personnel. Given
a verified "daisy chain". confidence in the functionality
of the individual devices in the chain approaches 90%.
Thus the devices which were previously the most
difficult and expensive to verify have become the
easiest and most cost effective to verify.

1.2.2.A

Once the chain is verified. any or all of the devices in
the chain can be reprogrammed with special self-test
patterns. or may be reprogrammed to accept ATE
originated stimuli or to drive ATE receivers.

Given a "daisy chain" which has accepted a stimulus
and generated a response which does NOT depend
upon the design function(s) of any adjacent non-ISP
devices, confidence in the functionality of the
individual devices in the chain exceeds 90%. Thus the
portions of a design which previously exhibited the
worst fault-coverage rating now exhibit the best rating.

A verified ISP "daisy chain” greatly facilitates access to
and verification of adjacent non-ISP devices and
modules. An entire ISP chain or any portion or device
may be programmed such that all inputs and outputs
remain in a high impedance state whenever the device
is powered-up or put into the programming mode.
This capability allows a board to be divided into small
"lumps” of logic which tremendously reduces the
resources required to generate test software. A major
cause of new-board mortality, excessive back-drive
current, can be completely eliminated via the
thoughtful placement of ISP compatible devices by an
RFT (reconfiguration for test) conscious design
enginecer. In the event of an unusually difficult to test
“lump”, an ISP chain can be programmed to serve as a
source of elementary test stimuli. Simple counters,
decoders. ATE controlled enable/disable signals, ATE
controlled read/write signals, and the like, can be
reprogrammed into an ISP chain via the ISP interface.

This new functionality can be entirely dedicated to an
intermediate step in the test process for a new-board,
and the chain later returned to its primary function
after the non-ISP portions of the new-board are
satisfactorily verified. This capability, is referred to as:
Reconfiguration For Test (RFT)

Unfortunately, such practices extract a high price in
terms of production costs (extra gates, solder holes,
board area. etceteras) and in terms of performance (5ns
to 30ns per ATE controllable gate. infant mortality due
to backdrive related stress). In the absence of
traditional DFT, the price extracted is in terms of fault
coverage and diagnostic engineering resources. These
problems can all be solved by using ISP protocol
devices where ever feedback signals need to be
generated or interpreted. RFT allows feedback loops to
be opened. eliminated,or tied to a test node. Given an
unused input and an unused output on an ISP protocol
device used to generate a feedback signal. that signal
can be routed to the unused output where it may be

sensed by ATE without influencing the UUT.
Additionally, the unused input can be routed to the
portion of logic which is normally driven by the
feedback. Thus the ATE itself is made into a series
component in the asynchronous feedback loop. Once
the feedback signal has been examined by the ATE, a
replica can be created and driven back into the logic
normally driven by the feedback signal.

This serves the intent of the traditional DFT
requirement for physical interruption of asynchronous
feedback loops, but without the need for switches or
jumpers. It allows an electrical interruption in the
feedback circuit, but without propagation delays due to
extra gates, and without potential stress failures due to
excessive backdrive. Overall, the use of ISP devices in
critical asynchronous feedback circuits allows:

e} A reduction in time required to achieve

acceptable fault coverage;

2) A reduction in resources required to achieve
acceptable fault coverage;

3) No performance penalties;

“4) No backdrive overstress;

(5) Minimal additional hardware,

6) Full DFT compliant loop control and
interruption.

Reduction of tight hardware kernels In any system
design there are invariably certain sections or modules
which are uncompromisingly speed critical. An
example of such a speed critical logic module or sub-
module would be the address decode and access
arbitration circuitry for a muitiple-port cache RAM
bank. Fundamentally, the response time of such a
circuit is so critical that no allowance can be made for
added functionality or for control which does not
enhance the primary design goal or which, at a
minimum, incurs no performance overhead. This
includes any circuitry which might facilitate testability.
As a rule, such circuits constitute less than 20% of a
typical system's real estate and consume more than
80% of the diagnostic resources applied to that
particular system. This is not a comfortable
situation,but until recently the economics which
evaluate the return on diagnostic-related expenditures
(versus the life<cycle of a system or viability of a
manufacturing process) have mandated this style of
diagnostic resource allocation. The usual approach to
testing such circuitry (since it is known in advance that
some compromise in both fault coverage and fault
isolation will have to be made), is to attempt to model
the group of devices that make up the performance

critical portions of the system as though they were a
single MSI or LSI full custom component.

This requires considerable ingenuity on the part of the
diagnostic engineer since he/she must generate a
complete set of test software/patterns for this pseudo-
device as though it were an outside vendor's
unsupported new product. This approach can be
tremendously improved via the use of ISP HDPLDs to
implement the performance critical portions (and
therefore the least ATE accessible portions) of any
given system. Since ISP HDPLD:s are state-of-the-art
CMOS programmable logic devices, there is no
performance penalty. A "threaded signal” performance
critical logic circuit can be completely repatterned,
many times,during the performance of an ATE
program, to allow the ISP protocol devices to be fully
tested. Also. given a high enough percentage of ISP
protocol devices in any group of devices which make
up a performance critical design, even non-ISP device
testability can be improved by using the ISP HDPDSs
to implement ATE access paths during the execution of
an ATE program.

Although more diagnostic resources (testability guru
time) are required to implement an ATE program
which includes ISP device RFT control array patterns.
the overall savings in time required to test a tight,
performance critical hardware module, is actually
reduced. This allows increased fault coverage and
greatly increased fault isolation. but with an overall
reduced demand for resources. Trade-offs can be made
which allow greatly increased testability without the
expenditure of extra resources, or which provide a net
savings in diagnostic resource utilization without any
testability loss.

Using ISP 1o increase visibility into the board in the
previous RFT discussions, little mention has been
made regarding the tremendous opportunities offered
by ISP protocol devices for increased visibility into a
new-board during the ATE/ATP (automatic test
equipment/automatic test procedure) portions of the
manufacturing process. Points mentioned earlier deal
mainly with single function, lumped logic modules,
constructed partially or even entirely of ISP protocol
devices. While this perspective encourages increased
fault coverage and better fault isolation of performance
critical circuits and/or multiple-device state-machines
via the introduction of RFT principles, it does not
adequately describe the benefits available by using ISP
protocol devices to partition an entire new-board or
system for the purpose of enhancing system-level
testability.

1.2.2.A

Most system-level designs incorporate a variety of
special-purpose devices (example: RAMs. ROMs.
UARTS, controllers, processors, etc.) which are nestled
among, and interconnected by, a large quantity of
general purpose ("glue” chips) devices . In the last few
years, PLDs and HDPLDs have come to replace many
of the older SSI and MSI “glue" devices. But for most
practical purposes, a HDPLD can be conceptually
classified as a multiple SSI and MSI devices
breadboard in a package. From a testability viewpoint,
HDPLD:s offer a reduction in "glue"device package
count, but not in logic complexity or in density. In an
average large-volume, medium scale. high speed
digital logic design, HDPLDs will ofien account for
20% or more of the logic device package count.
HDPLDs, in this type of application, are not famous for
improving either the fault coverage or the fault
isolation of a logic design. ISP HDPLDs. however,
offer exactly this benefit. Since ISP HDPLDs can be
serially reprogrammed, it is possible to verify the
correct operation of a ISP device's internal logic CA
(control array, or fuse map) via programming interface
"daisy chain". Verification of any given device's CA
implies a very high probability that the entire device is
functional. Once an entire chain has been verified, this
string of reprogrammable logic devices, extending into
a logic design, can be used to improve the visibility
into a new-board.

The simplest means of improving visibility is to use the
ISP HDPLD:s as test signal routing switches. Given a
single ATE accessible input to an ISP device, any or all
of the device's outputs may be programmed to track
that input. Likewise, given a single ATE accessible
output. any or all of the device's inputs may be
programmed to be tracked. If the ISP HDPLDs have
interconnected inputs and outputs, test signals can be
routed in and out through any number of discrete ISP
devices. (Note: This type of testability enhancement
generally requires that a design be implemented with
RFT in mind). More complex, is the use of a verified
ISP chain to generate simple algorithmic test patterns
for the stimulation of non-ISP devices down-stream.
Since most HDPLDs perform very well as sequential
synchronous state-machines, a device or series of
devices with one or more ATE accessible inputs can be
programmed to generate a deterministic output pattern
in response to any combination of ATE generated clock
or data signals.

In other words, an ISP HDPLD can be used as part of
an ATE/ATP test solution for difficult-to-access non-
ISP portions of a logic design. (Note: This type of
testability enhancement always requires that a design

4-12

1.2.2.A

be implemented with RFT in mind.) Still more
complex, is the use of a verified ISP chain to capture
simple synchronous response signals from non-ISP
devices up-stream. Because registered outputs work
very well as serial shift registers, a device or series of
devices with one or more ATE accessible outputs can
be programmed to capture several sequential logic
values sensed by any or all of the device's inputs. In
other words. an ISP HDPLD can be used to capture the
results of several successive test patterns and can even
perform elementary processing to facilitate signature
analysis. Ultimately. a multi-function (generic) system
can be designed such that one of the target operations
for the design is to allow some form of ATE to
thoroughly exercise a thorough subset of all possible
logical functions. Such a system would be flexible (due
to RFT capabilities) enough to allow every device-
external signal conductor to be individually exercised.

The ATE should be able to apply a combination of
random and tailored test vectors to any device or
multiple-device hardware kernel and to sense the
subsequent responses via any signal conductor. This
type of testability enhancement would utilize ISP
HDPLDs as though the ISP devices themselves made
up a serially accessible distributed test processor, and
as though the logic CA patterns for a chain of ISP

devices acted like individual test processor instructions.

We have seen how ISP HDPLDs can help in the
testability of complex logic boards, however there are
still several others areas in the product life cycle that
also benefit from ISP.

In System Reprogrammability e
During any system design cycle, major board building
blocks such as microprocessor and RAM are selected
first. Decisions regarding system logic tend to be
deferred to the later stages of the design process.
When using ISP devices, the designer can fully
populate his prototype board with its major building
blocks, interconnecting all functions with
programmable logic. Design changes, whether they
require added or modified logic, can be made in
minutes using ISP HDPLD:s.

Manufacturing Advantages

At present. there are no auto-handlers capable of
handling the programming of the higher pin counts
associated with today's HDPLDs. As a result, all non-
ISP high pin count devices must be programmed by
hand, using a standard logic programmer.

1t is a non-trivial task to insert a high pin count. small
lead pitch device into a programming socket adapter.
program. label (or mark) and re-inventory the device
without bending the delicate package leads or pins.
Auto-inserting devices also increases the risk of
exposing the devices to potential ESD environments.

Field Upgrades

ISP HDPLD:s provide an ideal way to reconfigure
boards and/or upgrade product features in the field.
Using conventional logic technology, once a system is
installed at a customer location, it becomes very
expensive and difficult for the supplier to upgrade the
customer to the latest hardware revision, fix hardware
bugs or enable hardware options.

HDPLD Devi ri

Most ISP HDPLD devices, even though programmed
on board, can still assert the security feature
eliminating the risk of the JEDEC pattern being read
out of the device. If the ISP requires a new or updated
JEDEC pattern, the device is erased (which is done
automatically before the programming), a new pattern
is programmed into the device and the security cell is
reasserted.

nclusion

The challenge for today's design and test engineers is
to design in a comprehensive board test methodology
while at the same time reduce the cost of test fixturing.
As the PC board becomes more and more complex, it
becomes harder and more expensive to have a bed of
mails test to test each portion of the logic on the board.
Therefore the test engineer must now work hand-in-
hand to find solutions to these problems. Fortunately,
there are options available like ISP HDPLDs to assist
in the debug and manufacturing test of complex PCBs.

Higher product quality and reliability can result from
the superior test coverage ISP offers. Special test logic
can be programmed temporarily into the hardware to
facilitate exhaustive product testing. The elimination
of defects at an early stage of board check-out reduces
more expensive system-level failures later in the final
manufacturing process.

ISP HDPLD:s are opening doors of opportunity in
almost every facet of systems design and test.

Notes

414

_ispLSI Configurable
Memory Controller

Introduction

There are many advantages of using the in-system pro-
grammable ispLS| devices. In board level designs, as well
as during manufacturing, the flexibility of hardware
reconfiguration can lead to many innovative system de-
signs. Once configured, the ispLSI devices' non-volatile
E2CMOS cells will retain their configuration even when the
power is turned off. The guaranteed 1,000 programming
cycles and 20 year data retention of the ispLSI device will
allow the user to reliably reconfigure the device as often as
required.

This application note highlights the advantages of de-
signing with ispLSI devices and how they can lead to
innovative design ideas which translate to ease of use
and instant updates without board layout changes. The
flexibility of design is illustrated with the use of the
Dynamic Random Access Memory (DRAM) controller.
This example shows a typical microprocessor and
memory interface with the memory controller controlling
the DRAM access and refresh timing requirements. The
use of Lattice pLSI and ispLSI Development System
(pDS) Software is also illustrated in this application note.
The Lattice Design Fiie (.Idf) listing file generated by the
software is also attached at the end of this section.

Memory Controller Logic Overview

When interfacing the microprocessor to the DRAM, the
control signal and timing requirements of both the proces-

Figure 1. DRAM Timing Controller Block Diagram

sor and the DRAM must be satisfied. In order to satisfy
these requirements, the external timing controller musttake
the processor address, data and control signals and trans-
late theminto the control signals for the DRAM. Atthe same
time, the DRAM timing controller must take into account the
refresh requirements of the DRAM.

Figure 1 shows the block diagram of the DRAM timing
controller thatis implemented in the ispLSI 1032. The state
machine and address multiplexer blocks are used to control
the memory access request of the processor and supply the
DRAM with the necessary address and control signals.
DRAM refresh requirements are controlled by the refresh
timer block, refresh address counter block and the address
multiplexer block.

Any access request from the processor is processed by
the state machine based on the processor control signals
such as Read/Write (R/W), Memory/IO access (M/10),
Address Latch Enable (ALE) and the microprocessor
address signals. The Ready (RDY) signal is used to
inform the processor the status of the requested data. In
other words, itis used to acknowledge the processor that
the memory is ready to respond to the processor. The
address multiplexer generates the row and column ad-
dresses necessary for the memory access cycle. The
appropriate Row Address Strobe (RAS), Column Ad
dress Strobe (CAS), and Write (W) signals are also
generated by the state machine based on the processor

Refresh Complete (RFC)
SYSCLK Refresh
Timer
RESET - Refresh > .
n RAS0-RAS3
> » CAS0-CAS3
RW State > W
MI0 1 Machine
F/:ss - > ROW/COL | |
N 2 ACC/REF
J i)]
Access
10, RAM
. 22 20 Address
Microprocessor | 22 o Mitpleser| 7 ADDRESS

\A

|: Refresh

Address
Counter

10,

In-System Programmability Manual

ispLSI Configurable Memory Controller

inputs. To arbitrate between the memory access request
and the refresh request, the state machine also gener-
ates the status signal called Access. The purpose of this
signalis to keep track of an access cycle when the refresh
sequence is in progress. This status signal is then used
to determine whether or notto begin an access sequence
after the refresh sequence. As part of the access/refresh
arbitration, the state machine also issues an Access/
Refresh (ACC/REF) signal to the address multiplexer
logic block. Based on this signal the address multiplexer
block routes the appropriate access or refresh address
on to the external DRAM address bus.

As for all DRAMs, memory refresh must be completed
within a specified time. This process is completely
controlled by the DRAM timing controller. The refresh
timer block generates the internal refresh request signal
according to the system clock speed and the DRAM
refresh rate requirements. When the state machine
detects this refresh request signal, the refresh sequence
forthe DRAM is generated as soon as time permits. This
means that the refresh sequence is generated right after
the refresh request or if the timing controller is in the
middle of a memory access cycle the refresh sequence
is generated right after the memory access cycle is
complete. During the refresh sequence the row address
and all the RAS signals must be activated to perform the
basic RAS-only refresh. The row addresses are supplied
by the refresh address counter logic block. This logic
block keeps track of the rows that are being refreshed
and it gets incremented every time a refresh sequence is
performed. All the RAS signals are activated for refresh
by the state machine.

With the basic understanding of the DRAM timing control
logic complete, the next section will discuss the imple-
mentation of the logic in an ispLSI device and how to take
advantage of the ISP features to make the system
design, manufacturing and field updates easy and flex-
ible.

Figure 2. ISP State Machine

Load
ID

Idle State/
(Normal
Operation)

Note:
Control signals: MODE, SDI

Taking Advantage of ISP Features

Implementing a basic DRAM timing control logic in the
ispLSI 1032 takes up approximately 65% of the total logic
available in the device. (It is with this in mind that the
features needed for a specific design can be added to
these basic logic blocks). With the ISP capability, many
features can be added to accommodate the ever chang-
ing requirements of the system, microprocessor speeds,
availability of DRAMSs, and the memory configurations.
Moreover, the changes are made only under the software
control. Instead of having different production runs for
various different options, the options are added at the in-
system programming stage.

The programming of the ispLSI devices are handled via
five TTL levelinterface signals. Of these five signals, four
signals can be dual function, a programming function as
well as an input during normal device operation. The ISP
Enable (ispEN) signal is the one dedicated programming
pin used to enable and disable the programming func-
tion. Once in programming mode, the mode control
(MODE), serial data input (SDI), serial data clock (SCLK),
and serial data output (SDO) signals control the entire
programming process. The address and data required to
program the device are serially shifted into the internal
shift registers and the three state programming state
machine steps through the programming sequence. The
five-bit instructions within the state machine define all the
necessary steps for programming. Figure 2 shows the
ISP programming state machine with the control signal
requirements for the state transitions. Refer to the "Hard-
ware Basics" section in this manual for a more detailed
programming description.

Different System Speed

Designing with a different speed microprocessor re-
quires a different DRAM timing controller. The

Load
Command

Execute
Command

Shift State
(Load
Comments)

Execute State
(Execute
Command)

In-System Programmability Manual

ispLSI Configurable Memory Controller

adjustments must be made in the state machine and
refresh timer logic of the controller to account for the
difference in speed. Without the capabilities of the ISP
features, different boards with different PLD codes must
be built to work with different processor speeds. By
providing a simple programming circuitry on board to
support the ISP programming, the logic adjustments for
different speed processor can be accomplished by in-
system programming the different patterns via software
control. Manufacture of these options are made simple
and cost effective by not having to keep an inventory of
prepatterned devices.

DRAM Feature Flexibility

DRAMs have many features from which the system
designer can select. For the same DRAM configuration,
the system designer can select from DRAMs that have
different access schemes such as nibble mode, static
column mode and page mode. Similarly, differentmemory
refresh schemes can be chosen. The two choices of
refresh schemes include the simple RAS only refresh
and the option to perform hidden refresh with the CAS
before RAS refresh scheme. Most of these various
DRAM options can be supported by in-system program-
ming the ispLSI devices. Again, the flexibility lies in the
fact that the decision of what function the ispLSI will
perform on board can be made after the decision has
been made on which type of DRAMs are used on board.

Different DRAM Configuration

The ispLSIimplementation of the DRAM timing controller
makes the change of memory configuration very simple.
Reprogramming of the address decoding and turning on
the appropriate address strobe signals for different
memory configuration can be done by in-system
reconfiguration of the state machine and the address
decoding of the ispLSI device. All of these changes can
be accomplished under software control.

Memory Timing Controller Details

As shown in Figure 1 the memory timing controller
consists of four different logic blocks. The refresh timer,
state machine, refresh address counter and memory
address multiplexer. All boolean equations for the logic
blocks are developed within the Lattice pDS Software.
The entire memory timing controller design assumes that
all the processor signals are typical of a commercially
available processor with a clock speed of 25 MHz.
DRAMs are arranged in four banks of 1M X 32-bit
arrangement. All timing for the access and refresh
sequences are shown in the timing diagram.

Refresh Timer

The function of the refresh timer is to generate a refresh
request signal every 15.5 ps. This refresh period is
derived from the DRAM refresh requirement of 512 rows
of refresh every 8 ms for the 1M X 1 DRAM. Based on
the 25 MHz system clock frequency, the count value to
divide the clock period to the refresh period is 200.
Changing processor speed will only require a change of
count value. Once the count value expires, the refresh
timer generates an internal refresh signal to inform the
state machine to perform a refresh cycle. When the state
machine completes the refresh cycle, a refresh complete
(RFC) signal is generated for the refresh timer. The
refresh timer then resets the internal counter for the next
refresh period.

ispLSlimplementation of the refresh timer takes up three
GLBs (A0-A2) within the device. The system clock is
used to run the nine bit counter, RFC is the input signal
to this block and REFRESH is the output signal of this
logic block.

State Machine

The state machine can be further divided into four
different sub-logic blocks. These sub-logic blocks con-
sists of a RAS generator, CAS generator, 4-bit state
machine which is divided into two state variable bits and
two counter bits, and control signal generator. In the
ispLSI 1032 implementation, the state machine logic
block takes up 9 GLBs.

The 4-bit state machine is divided into a 2-bit state
variable, named STO and ST1, and 2-bit state counter,
named SCNTO and SCNT1. The state diagram with its
state transitions are shown in Figure 3. In each of the
access and refresh states, the state counter sequences
through the operation until the sequence is complete.
The purpose of the state variable bits are only to keep
track of the state transitions. Once the state transition
has occurred, the state counter bits take the responsibil-
ity of sequencing through the state.

The three states are divided as idle state, access state
and refresh state. Based on the processor control signal
and the internal refresh request signal, the state transi-
tion occurs from idle state to either access state or
refresh state. If the refresh and access request happen
atthe same time, refresh request takes precedence over
access request. When the refresh request is asserted
during an access cycle, the refresh cycle follows right
after the access cycle. The only other condition between
the access and refresh request that the state machine
needs to arbitrate is when the access request occurs

In-System Programmability Manual

ispLSI Configurable Memory Controller

during the refresh sequence. The access feedback
signal of the state machine is activated when the access
request occurs during the refresh cycle. When the
refresh cycle is complete, the access feedback signal is
used to determine whether or not the access sequence
needs to begin. The timing diagrams in Figure 4 and 5
illustrate the control signal sequence for the access and
refresh cycles, respectively.

Figure 3. DRAM Timing Controller State Machine

Idle State
ST1,ST0=0,0

In addition to the external DRAM control signals, the state
machine also generates the control signal forthe address
multiplexer and the refresh address counter. The ROW/
COL signal directs the address multiplexer to output the
appropriate row and column address during the access
cycle. Furthermore, the address multiplexer accepts the
access/refresh (ACC/REF) control signal to either direct
the memory access address from the processor, or direct
the refresh row address from the refresh address counter
to the DRAM.

Refresh
?
No
'ALE

and M/IO or
ACC7ESS

No

Yes

Yes

Access State
ST1,ST0=1,0

Figure 4. Access Cycle Timing

Refresh State
ST1,8T0=0,1

e/ — T
oon T DR ARAAAARRAANRR
I I S D

sl

ROW/COL

ACC/REF

In-System Programmability Manual

ispLSI Configurable Memory Controller

Refresh Address Counter

The refresh address counter keeps track of the rows of
DRAM to be refreshed. This counter is only incremented
on the falling edge of the RAS signal during refresh
sequence. The ispLS| device implementation of this

counter takes 3 GLBs.

Memory Address Multiplexer

In access mode, determined by the ACC/REF internal
signal, the memory address multiplexer multiplexes be-
tween the row and column address. Once in the refresh
cycle, the refresh address comes from the refresh ad-
dress counter. It takes 3 GLBs to implement the
multiplexer in the ispLSI 1032.

Figure 5. Refresh Cycle Timing

Conclusion

The intention of this application section is to give an
overview of how the ISP features can be used to improve
the design features and the manufacturing process by
using an example of a generalized DRAM timing control-
ler. In addition, the software example given in the
document should provide a good starting point for de-
signers who need to implement a state machine based
design. With the flexibility of the ispLSI devices the
possibilities are limited only by one's imagination to
implement innovative designs. The following sections
list the Lattice Design file with the Boolean Equations.

0 1 2 3 4
ax || L
REFRESH -
XACC/REF

ACCESS

S

4-19

In-System Programmability Manual

ispLSI Configurable Memory Controller

Design LDF Listing

//isp_app.ldf generated using Lattice pDS Version 2.50
LDF 1.00.00 DESIGNLDF;
DESIGN DRAM CONTROLLER 1.00;
PROJECTNAMEispAPPLICATIONS;
DESCRIPTION
DRAM CONTROLLER DESIGN FORispAPPLICATION.
IT INCLUDES FOUR MAJOR BLOCKS.

- REFRESH TIMER

- REFRESH ROW ADDRESS COUNTER

- ADDRESS MUX

- STATE MACHINE;

PART pLSI 1032-90LJ;

DECLARE
END; //DECLARE

SYM GLB €2 1
11111 ROW ADDRESS STROBE (RAS1,RASO) GLB 11717
SIGTYPE IRAS1 REG OUT;
SIGTYPE IRASO REG OUT;
EQUATIONS
IRAS1.CLK = ICLK;
IRAS1 = !STO & !IA20 & IRAS1 & !IRESET ///// REDUCED RAS1
1ST1 & IA21 & IRAS1 & !IRESET
ISTO & ST1 & SCNTO & SCNT1 & IA20 & !IA21 & !IRESET
STO & !ST1 & SCNTO & SCNT1 & !IRESET
1STO & !ST1 & IRAS1 & !IRESET
STO & ST1 & IRAS1 & !IRESET
SCNT1 & IRAS1 & !IRESET
SCNTO & IRAS1 & !IRESET;

R HR R

I1STO0 & IA20 & IRASO & !IRESET 117177 REDUCED RASO
!ST1 & IA21 & IRASO & !IRESET
ISTO & ST1 & SCNTO & SCNT1 & !IA20 & !IA21 & !IRESET
&
&

IRASO

STO IST1 & SCNTO & SCNT1 & !IRESET
1STO IST1 & IRASO & !IRESET

STO & ST1 & IRAS2 & !IRESET

SCNT1 & IRASO & !IRESET

SCNTO & IRASO & !IRESET;

W E R R AR

END
END;

SYM GLB A2 1 ;
1111/ REFRESH TIMER GLB2 /1777
SIGTYPE RQ8 REG OUT;
SIGTYPE RQ9 REG OUT;
SIGTYPE REFRESH REG OUT;
FJK11 (REFRESH,R RATE,RFC,ICLK); ///// REFRESH REQUEST SIGNAL
EQUATIONS
RQ8.CLK = ICLK;
RQ8 = (RQ8 & !RFC)
$$ (RQ7 & RQ6 & RQS &
RQ9 = (RQ9 & !RFC)
$$ (RQ8 & RQ7 & RO6 & RQ5 & RQ4 & RQ3 & RQ2 & RQl & RQO &
R_RATE = RQ7 & RQ6 & !RQ5 & !RQ4 & RQ3 & !RQ2 & !RQl1l & !RQO;
END
END;

RO4 & RO3 & RO2 & RO1 & ROO &
RYe & RS & RRL & RQL & RQU & R

11177

/1177

11117

IRFC) ;

4-20 In-System Programmability Manual

ispLSI Configurable Memory Controller

SYM GLB Al 1 ;
/11717 REFRESH TIMER GLB1 /1777
SIGTYPE RQ4 REG OUT;
SIGTYPE RQ5 REG OUT;
SIGTYPE RQ6 REG OUT;
SIGTYPE RQ7 REG OUT;

EQUATIONS
RQ4.CLK = ICLK;
RQ4 = (RQ4 & !RFC)

$$ (RQ3 & RQ2 & RQl & RQO & !RFC);
RQ5 = (RQ5 & !RFC)
$$ (RQ4 & RQ3 & RQ2 & RQ1 & RQO & !RFC);
RQ6 = (RQ6 & !RFC)
$$ (RQ5 & RQ4 & RQ3 & RQ2 & RQl & RQO & !RFC
RQ7 = (RQ7 & !RFC)
$$ (RQ6 & RQ5 & RQ4 & RQ3 & RQ2 & RQL1 & RQO & !RFC);
END
END;

SYM GLB A0 1 ;
////// REFRESH TIMER GLBO /11117
SIGTYPE RQO REG OUT;
SIGTYPE RQ1 REG OUT;
SIGTYPE RQ2 REG OUT;
SIGTYPE RQ3 REG OUT;
EQUATIONS
RQO.CLK = ICLK;
RQO = !RQ0 & !RFC;
RQ1 = (RQl & !RFC)
$$ (RQO & !RFC);
RQ2 = (RQ2 & !RFC)
$$ (RQ1 & RQO & !RFC);
RQ3 = (RQ3 & !RFC)
$$ (RQ2 & RQl & RQO & !RFC);
END
END;

SYM GLB DO 1 ;
/11717 ADDRESS MUX GLBO /11717
SIGTYPE IRAMO ASYNC OUT;

SIGTYPE IRAM1 ASYNC OUT;
SIGTYPE IRAM2 ASYNC OUT;
SIGTYPE IRAM3 ASYNC OUT;

EQUATIONS
IRAMO = ROW_COL & ACC_REF & IA0 ///// ROW SELECT /////
IROW_COL & ACC_REF & IA10 ///// COLUMN SELECT /////
IACC_REF & RCNTRO; ///// REFRESH ADDR SELECT /////

IRAM1 = ROW_COL & ACC_REF & IAl
IROW_COL & ACC_REF & IAll
IACC_REF & RCNTRI;

IRAM2 = ROW_COL & ACC_REF & IA2
IROW_COL & ACC_REF & IAl2
IACC_REF & RCNTR2;

IRAM3 = ROW _COL & ACC_REF & IA3
IROW_COL & ACC_REF & IAl3
|IACC_REF & RCNTR3;

END
END;

4-21 In-System Programmability Manual

ispLSI Configurable Memory Controller

SYM GLB D1 1 ;
11117 ADDRESS MUX GLB1 /11117
SIGTYPE IRAM4 ASYNC OUT;
SIGTYPE IRAM5 ASYNC OUT;
SIGTYPE IRAM6 ASYNC OUT;
SIGTYPE IRAM7 ASYNC OUT;

TOAITAMTNANC
LYUARLLIUNS

IRAM4 = ROW _COL & ACC_REF & IA4 ///// ROW SELECT /11117
|ROW_COL & ACC_REF & IAl4 ///// COLUMN SELECT /11117
!'ACC_REF & RCNTR4; 11717 REFRESH ADDR SELECT /////

IRAM5 = ROW _COL & ACC_REF & IAS
IROW _COL & ACC_REF & IAlS
IACC_REF & RCNTR5;
IRAM6 = ROW_COL & ACC_REF & IA6
IROW_COL & ACC_REF & IAl6
IACC_REF & RCNTR6;
IRAM7 = ROW_COL & ACC_REF & IA7
IROW_COL & ACC_REF & IAl7
|ACC_REF & RCNTR7;
END
END;

SYM GLB D2 1 ;
/1117 ADDRESS MUX GLB2 /11777
SIGTYPE IRAM8 ASYNC OUT;
SIGTYPE IRAM9 ASYNC OUT;

EQUATIONS
IRAM8 = ROW_COL & ACC_REF & IAS8 ///// ROW SELECT /////
JROW_COL & ACC_REF & IAl18 ///// COLUMN SELECT /////
IACC_REF & RCNTRS; ///// REFRESH ADDR SELECT /////

IRAM9 = ROW _COL & ACC_REF & IA9
|ROW_COL & ACC_REF & IAl9
IACC_REF & RCNTRY;
END
END;

SYM GLB D5 1 ;
////// REFRESH ROW COUNTER GLBO /11177
SIGTYPE RCNTRO REG OUT;
SIGTYPE RCNTR1 REG OUT;
SIGTYPE RCNTR2 REG OUT;
SIGTYPE RCNTR3 REG OUT;

EQUATIONS
RCNTRO.PTCLK = !IRASO; 1117/ USE RAS AS THE COUNTER CLOCK ////
RCNTRO = !RCNTRO & !ACC_REF ///// COUNT DURING REFRESH 11117
RCNTRO & ACC_REF; /11177 HOLD DURING ACCESS /1117
RCNTR1 = (RCNTR1 & !ACC_REF)
$$ ((RCNTRO & !ACC_REF)
(RCNTR1 & ACC_REF));

RCNTR2 = (RCNTR2 & !ACC_REF)
$$ ((RCNTR1 & RCNTRO & !ACC_REF)
(RCNTR2 & ACC_REF));
RCNTR3 = (RCNTR3 & !ACC_REF)
$$ ((RCNTR2 & RCNTR1 & RCNTRO & !ACC_REF)
(RCNTR3 & ACC_REF));
END
END;

4-22 In-System Programmability Manual

ispLSI Configurable Memory Controller

SYM GLB D6 1 ;
////// REFRESH ROW COUNTER GLBl /11117
SIGTYPE RCNTR4 REG OUT;

SIGTYPE RCNTR5 REG OUT;
SIGTYPE RCNTR6 REG OUT;
SIGTYPE RCNTR7 REG OUT;

EQUATIONS
/11117 USE RAS AS THE COUNTER CLOCK ////
RCNTR4.PTCLK = !IRASO;
RCNTR4 = (RCNTR4 & !ACC_REF)

///// COUNT DURING REFRESH 1111/
$$ ((RCNTR3 & RCNTR2 & RCNTR1 & RCNTRO & !ACC_REF)
(RCNTR4 & ACC_REF));
/1117 HOLD DURING ACCESS 1171/
RCNTR5 = (RCNTR5 & !ACC_REF)
$$ ((RCNTR4 & RCNTR3 & RCNTR2 & RCNTR1 & RCNTRO & !ACC_REF)
(RCNTR5 & ACC_REF));
RCNTR6 = (RCNTR6 & !ACC_REF)
$$ ((RCNTR5 & RCNTR4 & RCNTR3 & RCNTR2 & RCNTR1 & RCNTRO & !ACC_REF)
(RCNTR6 & ACC_REF));

RCNTR7 = (RCNTR7 & !ACC_REF)
$$ ((RCNTR6 & RCNTR5 & RCNTR4 & RCNTR3 & RCNTR2 & RCNTR1 & RCNTRO &
!ACC_REF)
(RCNTR7 & ACC_REF));
END
END;

SYM GLB D7 1 ;
////// REFRESH ROW COUNTER GLB2 /1117
SIGTYPE RCNTR8 REG OUT;
SIGTYPE RCNTR9 REG OUT;
EQUATIONS
RCNTR8.PTCLK = !IRASO; v USE RAS AS THE COUNTER CLOCK /1777
RCNTR8 = (RCNTR8 & !ACC_REF)
$$ ((RCNTR7 & RCNTR6 & RCNTR5 & RCNTR4
///// COUNT DURING REFRESH 1111/
& RCNTR3 & RCNTR2 & RCNTR1 & RCNTRO & !ACC_REF) # (RCNTR8 & ACC_REF));
1111/ HOLD DURING ACCESS /11117
RCNTR9 = (RCNTR9 & !ACC_REF)
$$ ((RCNTR8 & RCNTR7 & RCNTR6 & RCNTR5 & RCNTR4 & RCNTR3 & RCNTR2 &
RCNTR1 & RCNTRO & !ACC_REF)
(RCNTR9 & ACC_REF));
END
END;

SYM GLB C7 1 ;
1171/ STATE BITS GLB 1111/
SIGTYPE STO REG OUT;
SIGTYPE ST1 REG OUT;
FJK11l (ST0,JSTO0,KSTO,ICLK);
FJK11 (ST1,JST1,KST1,ICLK);

EQUATIONS
JSTO = !ST1 & !STO & REFRESH; /1117 STATE BITO SET INPUT /11117
KSTO = !ST1 & STO & SCNT1 & SCNTO; /1117 STATE BITO RESET INPUT ///
//
JST1 = !ST1 & !STO & !REFRESH & !IALE & IMIO_

4-23 In-System Programmability Manual

ispLSI Configurable Memory Controller

1ST1 & !STO & !REFRESH & ACCESS; /11117 STATE BIT1 SET INPUT /
/117
KST1 = ST1 & !STO & SCNT1 & SCNTO
1ST1 & STO & SCNT1 & SCNTO; /11117 STATE BITO RESET INPUT /
/1117
END
END;

SYM GLB C6 1 ;
1111/ STATE COUNTER BITS GLB /1117
SIGTYPE SCNTO REG OUT;
SIGTYPE SCNT1 REG OUT;
FJK11 (SCNTO,JSCNTO,KSCNTO,ICLK);
FJK11 (SCNT1,JSCNT1,KSCNT1,ICLK);
EQUATIONS
JSCNTO0 = !SCNTO & ST1 & !STO
ISCNTO & !ST1 & STO; ///// STATE COUNTER BITO SET INPUT /////
KSCNT0 = SCNTO & ST1 & !STO
SCNTO & !ST1 & STO
ST1 & !STO & SCNT1 & SCNTO
1ST1 & STO & SCNT1 & SCNTO; /////STATE COUNTER BITO0 RESET INPUT /

/177
JSCNT1 = !SCNT1 & SCNTO & ST1 & !STO
ISCNT1 & SCNTO & !ST1l & STO; ///// STATE COUNTER BIT1 SET INPUT /
/17
KSCNT1 = SCNT1 & SCNTO & ST1 & !STO
SCNT1 & SCNTO & !ST1 & STO
ST1 & !STO & SCNT1 & SCNTO
1ST1 & STO & SCNT1 & SCNTO; ///// STATE COUNTER BITO RESET INPUT /
/117
END
END;

SYM GLB C5 1 ;
/11117 CONTROL SIGNALS GLBO /1117
SIGTYPE RFC REG OUT;
SIGTYPE ACC_REF REG OUT;
FJK11 (RFC,JRFC,KRFC,ICLK);
FJK11 (ACC_REF,JACC_REF,KACC_REF,ICLK);
EQUATIONS
JRFC = !ST1 & STO & SCNT1 & !SCNTO; ///// REFRESH COMPLETE SET INPUT
1111/
KRFC = !ST1 & STO & SCNT1 & SCNTO; ///// REFRESH COMPLETE RESET INPUT ///
//
JACC_REF = !ST1 & STO & SCNT1 & SCNTO
IRESET; /71117 ACCESS/REFRESH SET INPUT /11177
KACC_REF 1ST1 & !STO & REFRESH & !IRESET;/////ACCESS/REFRESH RESET INPUT
1111/
END
END;

SYM GLB Cl1 1 ;
/11111 ROW ADDRESS STROBE (RAS3,RAS2) GLB /11117
SIGTYPE IRAS3 REG OUT;
SIGTYPE IRAS2 REG OUT;
EQUATIONS
IRAS3 = !STO & !IA20 & IRAS3 & !IRESET ///// REDUCED RAS3 /1117
1ST1 & !IA21 & IRAS3 & !IRESET
1STO & STl & SCNTO & SCNT1 & IA20 & IA21 & !IRESET

STO & !ST1 & SCNTO & SCNT1 & !IRESET

4-24 In-System Programmability Manual

ispLSI Configurable Memory Controller

!STO & !ST1 & IRAS3 & !IRESET

STO & ST1 & IRAS3 & !IRESET

SCNT1 & IRAS3 & !IRESET

SCNTO & IRAS3 & !IRESET;
IRAS3.CLK = ICLK;

!STO & IA20 & IRAS2 & !IRESET ///// REDUCED RAS2 /11177
!ST1 & !IA21 & IRAS2 & !IRESET
!STO & ST1 & SCNTO & SCNT1 & !IA20 & IA21 & !IRESET

&

&

IRAS2

STO & !ST1 & SCNTO & SCNT1 & !IRESET
1STO & !ST1 & IRAS2 & !IRESET

STO & ST1 & IRAS2 & !IRESET

SCNT1 & IRAS2 & !IRESET

SCNT0 & IRAS2 & !IRESET;

IRAS2.CLK = ICLK;

HRERHRE

END
END;
SYM GLB B7 1 ;
1111/ COLUMN ADDRESS STROBE (CAS0O,CAS1) GLBO /11117
SIGTYPE ICASO REG OUT;
SIGTYPE ICAS1 REG OUT;
FJK11 (ICASO0,JCASO0,KCASO,ICLK);
FJK11 (ICAS1,JCAS1,KCAS1,ICLK);
EQUATIONS
/111717 CASO SET INPUT 1117/
JCASO = ST1 & !STO & !IAl & !IAO0 & SCNT1 & SCNTO
IRESET;
/////CASO RESET INPUT /////
KCASO = ST1 & !STO & !IAl & !IA0 & !SCNT1 & SCNTO & !IRESET;
/11171 CAS1 SET INPUT /1117
JCAS1 = ST1 & !STO & !IAl & IAO & SCNT1 & SCNTO
IRESET;
/////CAS1 RESET INPUT /////
KCAS1 = ST1 & !STO & !IAl & IAO & !SCNT1 & SCNTO & !IRESET;

END
END;

SYM GLB B6 1 ;
1111/ COLUMN ADDRESS STROBE (CAS2,CAS3) GLB1 11111
SIGTYPE ICAS2 REG OUT;

SIGTYPE ICAS3 REG OUT;
FJK11 (ICAS2,JCAS2,KCAS2,ICLK);
FJK11 (ICAS3,JCAS3,KCAS3,ICLK);

EQUATIONS
JCAS2 = ST1 & !STO & IAl & !IAO & !SCNT1 & SCNTO ///// CAS2 SET INPUT
1111/
IRESET;
///// CAS2 RESET INPUT 11117
KCAS2 = ST1 & !STO & IAl & !IA0 & SCNT1 & SCNTO & !IRESET;
JCAS3 = ST1 & !STO & IAl & IAO & !SCNT1 & SCNTO///// CAS3 SET INPUT /////
IRESET;
///// CAS3 RESET INPUT 11111
KCAS3 = ST1 & !STO & IAl & IAO & SCNT1 & SCNTO & !IRESET;
END
END;

4-25 In-System Programmability Manual

ispLSI Configurable Memory Controller

SYM GLB B5 1 ;
/11117 CONTROL SIGNALS (ACCESS,WRITE) GLB1 /11777
SIGTYPE ACCESS REG OUT;
SIGTYPE IWREG REG OUT;
FJK11 (ACCESS,JACCESS,KACCESS,ICLK);
FJK11 (IWREG,JWREG,KWREG,ICLK);

EQUATIONS
JACCESS = !IALE & IMIO_; e MEMORY ACCESS REQUEST SET INPUT /117
/
KACCESS = ST1 & !STO & SCNT1 & SCNTO;/////MEMORY ACCESS REQUEST RESET
INPUT/////
JWREG = !ACCESS & IRW_ /1117 WRITE REGISTER SET INPUT /11117
ST1 & !STO & SCNT1 & SCNTO
IRESET;
KWREG = !ACCESS & !IRW_ & !IRESET; /11117 WRITE REGISTER RESET INPUT
1171/
END
END;

SYM GLB B4 1 ;
1111/ CONTROL SIGNALS (ROW/COL,RDY)GLB2 /11117
SIGTYPE ROW_COL REG OUT;
SIGTYPE IRDY REG OUT;
FJK11 (ROW_COL,JROW_COL,KROW_COL, ICLK);
FJK11 (IRDY,JRDY,KRDY,ICLK);

EQUATIONS
JROW _COL = ST1 & !STO & SCNT1l & SCNTO///// ROW/COL SELECT SET INPUT /////
IRESET;
KROW_COL = ST1 & !STO & !SCNT1 & SCNTO & !IRESET/////ROW/COL SELECT RESET SET
INPUT/////
JRDY = ST1 & !STO & SCNT1 & !SCNTO; ///// READY SET INPUT /////
KRDY = ST1 & !STO & SCNT1 & SCNTO; ///// READY RESET INPUT /////
END
END;

SYM IOC 1I01l6 1 ;
// ADDR 12 I/O CELL W/REG. INPUT //
XPIN IO XAl2;
ID11 (IAl2,XAl12,IICLK);

END;

SYM IOC 1I015 1 ;
// ADDR 11 I/O CELL W/REG. INPUT //
XPIN IO XAll;
ID11 (IAll,XAll1,IICLK);

END;

SYM IOC 1014 1 ;
// ADDR 10 I/O CELL W/REG. INPUT //
XPIN IO XAl0;
ID11 (IA10,XA10,IICLK);

END;

SYM IOC 1I013 1 ;
// ADDR 9 I/0 CELL W/REG. INPUT //
XPIN IO XA9;
ID11 (IA9,XA9,IICLK);

END;

4-26 In-System Programmability Manual

ispLSI Configurable Memory Controller

SYM IOC 1012 1 ;
// ADDR 8 I/O CELL W/REG. INPUT //
XPIN IO XAS8;
ID11 (IA8,XA8,IICLK);

END;

SYM I0OC 1I011 1 ;
// ADDR 7 I/0 CELL W/REG. INPUT //
XPIN IO XA7;
ID11 (IA7,XA7,IICLK);

END;

SYM IOC 1I010 1 ;
// ADDR 6 I/O CELL W/REG. INPUT //
XPIN IO XA6;
ID11 (IA6,XA6,IICLK);

END;

SYM IOC 1I09 1 ;
// ADDR 5 I/O CELL W/REG. INPUT //
XPIN IO XAS5;
ID11 (IA5,XA5,IICLK);

END;

SYM IOC 108 1 ;

// BDDR 4 I/O CELL W/REG. INPUT //
XPIN IO XA4;
ID11 (IA4,XA4,IICLK);

END;

SYM IOC I07 1 ;
// ADDR 3 I/O CELL W/REG. INPUT //
XPIN IO XA3;
ID11 (IA3,XA3,IICLK);

END;

SYM IOC Y2 1 ;
// INPUT REGISTER CLOCK (ALE) //
XPIN CLK XICLK;
IB11 (IICLK,XICLK);

END;

SYM IOC 106 1 ;
// ADDR 2 I/O CELL W/REG. INPUT //
XPIN IO XA2;
ID11 (IA2,XA2,IICLK);

END;

SYM IOC IO5 1 ;
// ADDR 1 I/O CELL W/REG. INPUT //
XPIN IO XAl;
ID11 (IAl,XAl,IICLK);

END;

SYM IOC I04 1 ;
// ADDR 0 I/O CELL W/REG. INPUT //
XPIN IO XAO;
ID11 (IAO,XA0,IICLK);

END;

SYM IOC 1IO3 1 ;
// READY I1/0 CELL, OUTPUT //
XPIN IO XRDY;
OBll (XRDY,IRDY);

END;

SYM I0OC 1I02 1 ;
// ADDRESS LATCH ENABLE I/0O CELL /

/
XPIN IO XALE;
IB11 (IALE,XALE);
END;

SYM I0C 101 1 ;
// MEMORY OR I/O ACCESS //
XPIN IO XMIO ;
IB11 (IMIO_,XMIO_);

END;

SYM IOC I00 1 ;
// READ WRITE SELECTION //
XPIN IO XRW_;
IB11 (IRW_,XRW_);

END;

SYM I0C YO 1 ;
// SYSTEM CLOCK INPUT //
XPIN CLK XSYS_CLK LOCK 20;
IB11 (ICLK,XSYS_CLK);

END;

SYM IOC 1I017 1 ;
// ADDR 13 I/0 CELL W/REG. INPUT /

/

XPIN IO XAl3;

ID11 (IAl13,XA13,IICLK);
END;

SYM IOC 1018 1 ;
// ADDR 14 I/O CELL W/REG. INPUT /

/

XPIN 10 XAl4;

ID11 (IAl4,XAl4,IICLK);
END;

SYM IOC 1019 1 ;
// ADDR 15 I/O CELL W/REG. INPUT /

/

XPIN IO XAl5;

ID11 (IA15,XAl15,IICLK);
END;

SYM IOC 1020 1 ;
// ADDR 20 I/O CELLW/REG. INPUT //
XPIN IO XA20;
ID11 (IA20,XA20,IICLK);

END;

In-System Programmability Manual

ispLSI Configurable Memory Controller

SYM IOC I021 1;

// ADDR 21 I/O CELL W/REG.INPUT

XPIN IO XA21

ID11
END;

(IA21,XA21,TICLK);

SYM IOC 1022 1;

XPIN IO XRESET;
IB11 (IRESET, XRESET);
END;
SYM IOC 1IO023 1 ;
XPIN IO XREFRESH;
IBl1 (REFRESH, XREFRESH);
END;
SYM IOC 1I024 1 ;
XPIN I0 XRAMO;
OB1l1 (XRAMO, IRAMO);
END;
SYM IOC 1025 1
XPIN I0 XRAM1;
OB11 (XRAM1, IRAM1);
END;
SYM TIOC 1IO026 1 ;
XPIN IO XRAM2;
OBll (XRAM2, IRAM2);
END;
SYM 1IOC TI027 1 ;
XPIN IO XRAM3;
OB11 (XRAM3, IRAM3);
END;
SYM TIOC TIO028 1;
XPIN IO XRAM4;
OBll (XRAM4, IRAM4);
END;
SYM TIOC 1I029 1;
XPIN IO XRAMS5;
OB11l (XRAM5, IRAMS);
END;
SYM IOC TIO030 1;
XPIN IO XRAM6;
OB11 (XRAM6, IRAM6);
END;

//

4-28

SYM

END;

SYM

END;

SYM

END;

SYM

END;

SYM

END;

SYM

END;

SYM

END;

SYM

END;
SYM

END;

SYM

END;

SYM

END;

I0C
XPIN
OB1l1

I0C
XPIN
OB11

I0C
XPIN
OBl11

I0C
XPIN
OB11

I0C
XPIN
OB11

I0C
XPIN
OB1l1

I0C
XPIN
OB11

I0C
XPIN
OB11

I0C
XPIN
OB11

I0C
XPIN
OB11

I0C
XPIN
OB1l1

1031 1 ;
IO XRAM7;
(XRAM7, IRAM7);

1032 1 ;
I0 XRAMS;
(XRAM8, IRAM8);

1033 1 ;
I0 XRAM9Y;
(XRAM9, IRAM9);

1034 1 ;
10 XSTO;
(XSTO, STO);

1036 1 ;
I0 XST1;
(XST1, ST1);

1038 1 ;
I0 XSCNTO;
(XSCNTO, SCNTO);

1040 1 ;
IO XSCNT1;
(XSCNT1, SCNT1);

1041 1 ;
I0 XACCESS;

(XACCESS, ACCESS);

1042 1 ;
IO XIWREG;
(XIWREG, IWREG);

1043 1;
10 XROW_COL;

(XROW_COL, ROW_COL);

1044 1 ;
IO XIRDY;
(XIRDY, IRDY);

In-System Programmability Manual

ispLSI Configurable Memory Controller

SYM IOC
XPIN
OBl11

END;

SYM IOC
XPIN
OB11

END;

1045 1 ;
I0 XRFC;
(XRFC, RFC);

1046 1 ;
I0 XACC_REF;
(XACC_REF, ACC_REF);

4-29

In-System Programmability Manual

Notes

4-30 In-System Programmability Manual

Lattice Bulletin Board

Systems

Introduction

Lattice maintains two Bulletin Board Systems (BBSs) to
communicate with customers. One BBS is located in
Milpitas, California at Lattice's Silicon Valley Design
Center. This BBS provides primary ispLSI and pLSI
support. The second BBS is located in Hillsboro, Oregon
at Lattice's headquarters. This BBS provides primary
GAL support and secondary ispLSI and pLSI support.
The following two sections explain in detail how to con-
nectto each of these BBSs and how to transfer information.

Using the Lattice Silicon Valley BBS

The Silicon Valley BBS is for ispLS! and pLSI customers,
distributors and FAEs who are requesting technical sup-
portonourispLSl and pLS| families of HDPLDs. You can
use the Silicon Valley BBS to:

Transfer designs to and from Lattice Application
Engineers

Join conferences to share and exchange information
with Lattice Application Engineers and other users

Telephone number and Communication
Software Setup

The telephone number for the Silicon Valley BBS is (408)
428 - 6417. The BBS supports modem speeds from 300-
9600 Baud, and supports the typical default

Figure 1. Silicon Valley BBS Initial Screen

diTICE

LATTICE SEMICONDUCTOR CORP .
ispLSl

hat is your first name?

Alt-Z FOR HELP| ANSI

communication parameters of eight data bits, one stop
bit, and no parity (8-N-1).

New User

If you have not used the Silicon Valley BBS before, the
system will first ask if you want the graphics mode. This
mode will help a first time user by displaying different
options by either blinking or displaying a different color
text, if you have a color display.

You will then be asked for your first name, your last name
and password (see Figure 1). The user name must be
your name; do not use your company name as a user
name. The password can be up to 12 alphanumeric
characters long. You will also be prompted to fill out a
short script. You should be prepared with information
about the Lattice software you are using and the 10 digit
serial number from the Lattice security block(s).

After you complete the questionnaire, the system will
display the main menu. As a first time user of the BBS,
you have no rights to upload or download files. Your
security level must be upgraded. This is done three times
a day: Monday through Friday at 8:00 a.m., 12:00 noon
and 5:00 p.m. except on holidays. All times are Pacific
Standard Time (PST) or Pacific Daylight Savings Time
(PDT).

For subsequent access, after you have logged on to the
system, you will be asked if you want to scan for mes-
sages. Answer (Y/N) and press the enter key.

pLST Bulletin Board System

9600 N81

4-31

In-System Programmability Manual

Lattice Bulletin Board Systems

Main Menu

From this point, you'll be at the Main menu, with access
to all other menus. Note that the Join option is not
available to a new user until your security level has been
upgraded.

Listed below is a brief description of the options available
to a new user

- G - Hangup
- H - Help menu - Command options and description

- C - Leave a message to the System Administrator
(SYSOP)

For users who have been upgraded and have previously
joined a conference, the Figure 3 menu will be seen. This
menu has seven additional commands that are acces-
sible. When you login to the BBS and have previously
joined a conference, the menuin Figure 3 will be the main
menu. The conference you are in is the location you will
be placed during your next successful login. Your options
will be:

- D - Download a file from the BBS (Instruct the BBS
computer to go into send mode

- E - Leave a message for another user

- J - Join conference - Change to conference 1 or 2

- R- Read a message left by another user

- S - Required questionnaire about design, before Up

load is started

Figure 2. Silicon Valley BBS Main Menu

- T - Transfer protocol - user specified type of file transfer
method

- U- Upload a file - Instruct the BBS computer to go into
receive mode

Upioad fiies to the BBS

If you need to upload (send) a file to the Lattice BBS, the
file should be zipped up, and a readme file should be
added to the zip file. The zip utilities compress the file size
and help to eliminate file transmission errors. The readme

file should have a description of the questions, comments
and/or problem you have.

To upload a file to the BBS, do the following:

1. Type J)oin 1 or 2 <enter> - This puts you into confer-
ence 1 or 2.

2. Type T)ransfer protocol <enter>.

3. Select which file transfer method you want - (X, Y, or
Z protocol).

4. Type S)cript <enter> and fill out the questionnaire
about your design and the design tools used.

5. Type U)pload filename <enter>. Filename is the
name it will be called on the BBS.

6. Select the send file utility on your software package.
If you are using a Procomm like software package,
you press the “Page Up” key.

Download files from the BBS

To download a file to the BBS, do the following:

System Operations
G)oodbye (Hang Up)
H)elp Functions
J)oin a Conference

Message Operations
C)omments to SYSOP

File Operations

Join a conference before
Uploading or Downloading

a File

New Users cannot Upload or

Download Files

Figure 3. Silicon Valley BBS Menu Selections available in conference 1 and 2

G)oodbye (Hang Up)
H)elp Functions
J)oin a Conference R)ead Message

T)rans. Protocol

System Operations Message Operations
C)omments to SYSOP

S)cript Question

File Operations
D)ownload a File

E)nter a Message

To Upload a File:
S)cript #1 then U)pload

4-32

In-System Programmability Manual

Lattice Bulletin Board Systems

1. Type J)oin 1 or 2 <enter> - This puts you into confer-
ence 1or2.

2. Type T)ransfer protocol <enter>.

3. Select which file transfer method you want - (X, Y, or
Z protocol).

4. Type D)ownload filename <enter>. Filenameis name
it will be called on the BBS.

5. Select the receive file utility on your software pack-
age. If you are using a Procomm like software package,
vou press the “Page Down” key.

Electronic Mail

Lattice Semiconductor does support the use of “E Mail”.
Communications regarding ispLS| or pLSI products can
be sent to “applications @lattice.com”. Please include
details as well as a voice telephone number.

Using the Hillsboro BBS

The Hillsboro BBS is accessible by any user with a
modem and communication package. You can use the
Hillsboro BBS to:

1. Transfer designs to and from Lattice Applications
Engineers

2. Access the latest utilities

3. Join conferences to share and exchange information
with Lattice Applications Engineers and other users

4. Send mail to and from Lattice Applications Engineers

Telephone Number and Communication
Software Setup

The telephone number for the Hillsboro BBS is (503) 693-
0215. The BBS supports modem speeds from 300-9600
Baud, and supports the typical default communication
parameters of eight data bits, one stop bit, and no parity
(8-N-1).

If You Are A New User

If you have not used the BBS before, the system will ask
you a short set of questions. These questions are used to
maintain statistics about our callers, and will not take long
to answer.

Figure 4. Hillsboro BBS Main Menu

You will be asked for a user name and password. For the
user name, simply enter your name. You will also be
prompted to enter a password. It is important to remem-
ber the password you enter. You will need it whenever
you log on to the system, and if you forget it, you may
have to have your account information deleted, and you
will have to log on again as a new user.

After you complete the questionnaire, the system will
display the main menu. From this point on, you will see
the main menu after you log on and give the system your
name and password.

The Main Menu

The Main Menu is the top level menu, meaning that you
can access all other menus from this point. The options
you are most likely to use are:

f- file menu
i- join conference
m- message menu

Use the file menu when you want to upload or download
files. Use the join conference menu when you wantto join
a conference on a particular topic. Use the message

MAIN MENU:

[Mleveeeeeennnnn Message menu
[C]....Comments to the sysop
[I]...Initial welcome screen
[Gleeeeennann Goodbye & Logoff
[2)ceeceneeacnns Command help

MAIN MENU: [MFCP I Y GH? J] ? |

Conf: “[0] - Lattice Technical Support”, time on 0, with 60 remaining.

[Fleeeeeooooaosnnans File menu
[Pleeeeeeeennn Page the sysop
[Y]eeeoeoeenann Your settings
[Hleeeeeooeooennnn Help level
[Tleeeeeeennn Join conference

]

4-33

In-System Programmability Manual

Lattice Bulletin Board Systems

menu when you want to leave a message, either as part
of a conference, or to a specific individual.

The File Menu

When you choose the File menu from the Main menu, you
will be presented with a list of options for upioading,
listing, or downloading files on the BBS.

If you need to download a file, and you know the name of
the file you want to download, choose option D and
download the file. You don’t have to be in a particular
conference to download the file.

If you don’t know the exact name of the file, then you can
choose one of the options in Figure 6 to locate the file.

Figure 7 is a an example session where files in a particu-
lar area are listed. In this example, when “L” was entered
for the file area, a list of all the file areas was displayed.
From this list of areas, you can choose the specific area
you are interested in listing.

Transferring Files

Once you identify the file that you want to download,
choose the D option from the Download menu. You will
be prompted for the file name. Alternatively, you can
initiate a download after listing the files in an area. Note
that one of the options in the menu listed above is D for
download.

Figure 5. Hillsboro BBS File Menu

File Protocols

The BBS supports a number of different file protocols for
downloading and uploading files. Which one to choose
depends on your communication software. Xmodem is
one of the most popular protocols, and your communica-
tion software is likely to support it.

You can display the file transfer protocol you've chosen
by selecting the Y option from the main menu (see Figure
8).

When you choose the Y option, all configuration param-
etersare displayed. Number 14 is the file transfer protocol.
By entering 14 as the setting to change, you can change
to a different file transfer protocol. Note that you can
choose to select the file transfer protocol each time you
start a download by selecting S as the default protocol
option.

Conferences

The Hillsboro BBS also provides a conference facility for
you to share information with Lattice Application Engi-
neers, and other users of Lattice Products. Conferences
are simply a way to organize messages left by users so
that they are grouped by a common subject. When you
join a conference, messages that you read or leave will
then be left in that conference area.

FILE MENU:

MAIN MENU: [MFCP I YGH ? J] ? [F]

FILE MENU:

[D]leeeenn. Download a file(s) [UJeeeeeens .Upload a file(s)
[L]eoo.. List available files [Q]eeeeennn Quit to main menu
[N]eooun. New files since [N] [I]....Information on a file
[T]eeeeeeeeeess. .Text search [Fleweeennn File transfer info
[Gleveeenwnnn Goodbye & logoff [H]..... vesesess..Help level
[Command help [M]eeeeoeennnn Message menu
[V]...View a compressed file [Rleeeuennnn Read a text file
[T]eeeennns ..Join conference [E]eeeeennns Edit marked list
Conf: “[0] - Lattice Technical Support”, time on 2, with 58 remaining.

[DULQNITFGH?MVRJIE] 2?2 []

Figure 6. Finding a File Without Knowing the Specific Name

If You Want to List Files Then Choose Option| And Enter

Uploaded after a certain date N The starting déteforthe search
Containing a specific word in their name or description T The word to ﬂswéarch for 7
Within an area category L The area to list

4-34

In-System Programmability Manual

Lattice Bulletin Board Systems

You can join a conference from the Main menu by
entering the J command (see Figure 9). After entering
this command, you can either enter the number of a
conference you want to join, or enter an L to list the
available conferences.

Once the conference is joined, you can enter the Mes-
sage menu from the Main menu (see Figure 10), and read
new messages in the conference by entering the R

command, or you can enter the S command to scan for
new messages.

The Scan command can be an easy way to locate topics
of interest. The Scan menu will list a variety of options to
search through messages. For example, you can specify
a word to search for anywhere in the body of a message
by selecting the B option. Any messages that contain this
text will be displayed (see Figure 11).

Figure 7. Example Session Showing Files Listed in a Particular Area

FILE MENU: [DULQNTITFGH?MVRJE] ? [L]

Areas (1..8) [#, #-#], [A]ll, [L]ist, [S|D|F], [H]elp)? 1

Scanning file area - GAL Applications Info

[1] 20VP8.ABL 988 01/13/93 ABEL example of setting output type
DwnLds: 26 DL Time 00:00:05 for GAL20VP8

[2] CHKSUM.EXE 4,992 11/13/91 | Simple JEDEC Fuse Checksum Utility
DwnlLds: 73 DL Time 00:00:26 *Info*

[3] PALTOGAL.EXE 33,012 12/09/92 Ver. 3.12, util to convert PAL JEDEC
DwnLds: 277 DL Time 00:02:51 files to GAL files

[4] PHY 836 01/13/93 ABEL example of setting output type on
DwnLds: 27 DL Time 00:00:04 GAL16VP8

[5] XSUM.EXE 14,069 01/18/89 ' Simple JEDEC Transmission Calculation
DwnLds: 52 DL Time 00:01:13 | Utility *info*

End of list

-Pause- [Clont, [H]elp, [N]onstop, [M]ark, [D]wnld, [I]nfo, [V]iew, [S]top? [C]

Figure 8. Selecting the Y Option from the Main Menu

MAIN MENU: [M FCPIYGH?J] ? [Y]

Present setting for : NEW USER

[1) Password T o kkkkkkk Msgs written Y

[2] Computer type : 8088 based syst No. of calls : 3

[3] Phone number : High message : 0

[4] Birth date /) User since : 04/01/94

[5] Screen length : 23 Last call : 04/05/94 11:12am

[6] Color menus : NO Last new files : 01/01/80 12:00am

[7] Erase prompt : NO Downloads : 0 Files, OK

[8] Hot keys : NO Uploads : 0 Files, OK

[9] Quote on Reply : NO Security level : NEWUSER

[10] Msg Clear Screen : NO Acct balance : 0

[11] Default editor : No default Netmail balance: 0

[12] File display mode: Double line

[13] Help level : Novice

[14] Default protocol : All

[15] Calling from 3

[16] Chat status : Unavailable

Setting to change [1..16], [H]elp ? []

4-35

In-System Programmability Manual

Lattice Bulletin Board Systems

Figure 9. Joining a Conference

Conferences available:

0) Lattice Technical Support
3) Utilities

MAIN MENU:

[M].............Message menu [Fleveeeeeeennnnnnn File menu
[C]....Comments to the sysop [Pleeeeennnnns Page the sysop
[I]...Initial welcome screen [Yleeeeoeoannn .Your settings
{G}.........Goodbye & Logoff (Hl.oovennnHelp level
[2)ecceenn [Command help [T]eeeen.Join conference

Conf: “[0] - Lattice Technical Support”, time on 19, with 40 remaining.
MAIN MENU: [MFCP I YGH? J] ? [J]

Join conference [0-3], [L]ist, [H]elp? [L]

1) Private E-Mail

MESSAGE MENU:

Join conference [0-3], [L]ist, [H]elp? []

Figure 10. Message Menu
MESSAGE MENU:
[Q]....Quit to the main menu [J}.+...v.....JOin conference
[Rleeeeneeennns Read messages [S]eeeeennnnnns Scan messages
[E].-.... Enter a new message [Kleeeoeeoonsns Kill a message
[Gleveerennn Goodbye & logoff [Hleeeooeeeennannn Help level
[2)ceeenneennnns Command help [Fleeeeeeeeoenanenn File menu
Conf: “[0] - Lattice Technical Support”, time on 14, with 44 remaining.

[QIJRSEKGHZ?F] ? []

Figure 11. The Scan Command

MESSAGE MENU: [Q J RS EKGH?F] ? [S]

[F]rom : <ALL>

[T]o : <ALL>

S[u]bject : <ALL>

Msg [B]ody : <ALL>

[N]umber : <ALL>

[D]irection : Forward

[Clonference : Current

Search command [F T U N D B C], [H]elp, [S]tart, [ENTER] to Quit? [B]

Search text? [paltogal 1

[Flrom : <ALL>

[T]o : <ALL>

S[u]lbject : <ALL>

Msg [B]ody : PALTOGAL

[N]umber : <ALL>

[D]irection : Forward

[Clonference : Current

Search command [F T U N D B C}], [H]elp, [S]tart, [ENTER] to Quit? []
4-36 In-System Programmability Manual

Section 1: ISP Overview

Section 2: The Basics of ISP

Section 3: ISP Programming Options

Section 4: Application Notes and Article Reprints

Section 5: General Information

Lattice SalES OffiCEScc.viiiiiiieiiie e e 5-1

Index

Sales Offices

LATTICE SALES OFFICES

Lattice Semiconductor
Les Algorithmes
Batiment Homeére

91 190 - Saint Aubin
TEL: (33)69332277
FAX: (33) 60 19 05 21

Lattice Semiconductor
Hanns-Braun-Str. 50

85375 Neufahrn bei Miinchen
TEL: (49) 8165-9516-0
FAX: (49) 8165-9516-33

HONG KONG
Lattice Semiconductor
2802 Admiralty Centre, Tower 1
18 Harcourt Road
Hong Kong
TEL: (852) 529-0356
FAX: (852) 866-2315

JAPAN
Lattice Semiconductor
leK Building 9F
1-23-3, Yanagibashi
Taitoh-ku, Tokyo 111
TEL: (81) 3-5820-3533
FAX: (81) 3-5820-3531

UNITED KINGDOM
Lattice Semiconductor
Castle Hill House
Castle Hill
Windsor
Berkshire SL4 1PD
TEL: (44) 753-830-842
FAX: (44) 753-833-457

NORTH AMERICAN SALES REPRESENTATIVES

ALABAMA

CSR Electronics, Inc.
303 Williams Avenue
Ste. 931

Huntsville, AL 35801
TEL: (205) 533-2444
FAX: (205) 536-4031

ARIZONA

Summit Sales

7802 E. Gray Rd. #600
Scottsdale, AZ 85260
TEL: (602) 998-4850
FAX: (602) 998-5274

CALIFORNIA

Bager Electronics

17220 Newhope St. #209
Fountain Valley, CA 92708
TEL: (714) 957-3367
FAX: (714) 546-2654

Bager Electronics

6324 Variel Ave. #314
Woodland Hills, CA 91367
TEL: (818) 712-0011
FAX: (818) 712-0160

NORTH AMERICA

CALIFORNIA

Lattice Semiconductor
1820 McCarthy Blvd.
Milpitas, CA 95035
TEL: (408) 428-6400
FAX: (408) 944-8450

Lattice Semiconductor

15707 Rockfield Plaza, Ste. 110
Irvine, CA 92718

TEL: (714) 580-3880

FAX: (714) 580-3888

FLORIDA

Lattice Semiconductor
12424 Research Pkwy.
Suite 101

Orlando, FL 32826
TEL: (407) 281-6500
FAX: (407) 658-0208

GEORGIA

Lattice Semiconductor
3091 Governors Lake Drive
Building 100, Suite 500
Norcross, GA 30071

TEL: (404) 446-2930
FAX: (404) 416-7404

Criterion Sales

3350 Scott Blvd, Bldg.44
Santa Clara, CA 95054
TEL: (408) 988-6300
FAX: (408) 986-9039

Earle Associates

7585 Ronson Rd. #200
San Diego, CA 92111
TEL: (619) 278-5441
FAX: (619) 278-5443

COLORADO
Waugaman Associates
4800 Van Gordon
Wheat Ridge, CO 80033
TEL: (303) 423-1020
FAX: (3083) 467-3095

CONNECTICUT

Comp Rep Associates
60 Connolly Pkwy.

Bldg. 12 Suite 210
Hamden, CT 06514
TEL: (203) 230-8369
FAX: (203) 230-8394

ILLINOIS

Lattice Semiconductor
1 Pierce Place

Suite 500-E

Itasca, IL 60143

TEL: (708) 250-3118
FAX: (708) 250-3119

MASSACHUSETTS
Lattice Semiconductor
67 S. Bedford St.

Suite 400 West
Burlington, MA 01803
TEL: (617) 229-5819
FAX: (617)272-3213

MINN TA

Lattice Semiconductor
3445 Washington Dr.
Suite 105

Eagan, MN 55122
TEL: (612) 686-8747
FAX: (612) 686-8746

NEW JERSEY

Lattice Semiconductor
115 Route 46

Suite F-1000

Mountain Lakes, NJ 07046

TEL: (201) 316-6024
FAX: (201) 316-6619

FLORIDA

Sales Engineering Concepts

4701 N. Federal Highway
Suite 430, Box B-11

Lighthouse Point, FL 33064

TEL: (305) 783-6900
FAX: (305) 782-7274

Sales Engineering Concepts
600 S. Northlake Blvd. #230

Altamonte Spgs, FL 32701
TEL: (407) 830-8444
FAX: (407) 830-8684

1A
CSR Electronics, Inc.

1651 Mt. Vernon Rd. # 200

Atlanta, GA 30338
TEL: (404) 396-3720
FAX: (404) 394-8387

ILLINOIS
Sumer, Inc.
1675 Hicks Rd.

Rolling Meadows, IL 60008

TEL: (708) 991-8500
FAX: (708) 991-0474

NEW YORK

Lattice Semiconductor
Linden Oaks Park

70 Linden Oaks

3rd Floor

Rochester, NY 14625
TEL: (716) 383-5320
FAX: (716) 383-5321

OREGON

Lattice Semiconductor
5555 N.E. Moore Ct.
Hillsboro, OR 97124
TEL: (503) 656-4808
FAX: (503) 656-6541

TEXAS

Lattice Semiconductor
100 Decker Ct. Ste. 280
Irving, TX 75062

TEL: (214) 650-1236
FAX: (214) 650-1237

Lattice Semiconductor
9600 Great Hills Trail
#150W

Austin, TX 78759

TEL: (512) 502-3057
FAX: (512) 343-7309

INDIANA

Electronic Sales and
Engineering

7739 E. 88th St.

PO Box 5009
Indianapolis, IN 46250
TEL: (317) 849-4260
FAX: (317) 841-0231

IOWA

Stan Clothier Company
1930 St. Andrews NE
Cedar Rapids, IA 52402
TEL: (319) 393-1576
FAX: (319) 393-7317

KANSAS

Stan Clothier Company
13000 West 87th St. #105
Lenexa, Kansas 66215
TEL: (913) 492-2124
FAX: (913) 492-1855

In-System Programmability Manual

Sales Offices

MARYLAND
Deltatronics

24048 Sugar Cane Ln.
Gaithersburg, MD 20882
TEL: (301) 253-0615
FAX: (301) 253-9108

MASSACHUSETTS
Comp Rep Associates
100 Everett Street
Westwood, MA 02090
TEL: (617) 329-3454
FAX: (617) 329-6395

ICHI
Greiner & Associates
15324 E. Jefferson Ave.
Grosse Pointe Park, Ml 48230
TEL: (313) 499-0188
FAX: (313) 499-0665

MINNESOTA

Stan Clothier Company
9600 W. 76th St., Ste. #A
Eden Prairie, MN 55344
TEL: (612) 944-3456
FAX: (612) 944-6904

MISSOURI

Stan Clothier Company
3910 Old Highway 94 South
Suite 116

St. Charles, MO 63304
TEL: (314) 928-8078
FAX: (314) 447-5214

NEW JERSEY

Technical Marketing Group
175-3C Fairfield Ave.
West Caldwell, NJ 07006
TEL: (201) 226-3300
FAX: (201)226-9518

NEW YORK

Technical Marketing Group
150 Broad Hollow Rd.
Suite 310

Melville, NY 11747

TEL: (516) 351-8833
FAX: (516) 351-8667

Tri-Tech Electronics
300 Main St.

E. Rochester, NY 14445
TEL: (716) 385-6500
FAX: (716) 385-7655

Tri-Tech Electronics

14 Westview Dr.
Fishkill, NY 12524

TEL: (914) 897-5611
FAX: (914) 897-5611

Tri-Tech Electronics
1043 Front St.
Binghampton, NY 13905
TEL: (607) 722-3580
FAX: (607) 722-3774

NORTH CAROLINA

CSR Electronics, Inc.

5848 Faringdon Place, Ste. 2
Raleigh, NC 27609

TEL: (919) 878-9200
FAX: (919) 878-9117

CSR Electronics, Inc.
6425 Creft Cr.

Indian Trail, NC 28079
TEL: (704) 882-3995
FAX: (704) 882-3999

OHIO

Makin & Associates
3165 Linwood Rd.
Cincinnati, OH 45208
TEL: (513) 871-2424
FAX: (513) 871-2524

Makin & Associates

6631 Commerce Pkwy. Ste. K
Dublin, OH 43017

TEL: (614) 793-9545

FAX: (614) 793-0256

Makin & Associates

6519 Wilson Mills Rd.
Mayfield Village, OH 44143
TEL: (216) 461-3500
FAX: (216) 461-1335

OKLAHOMA

West Associates

5555 E. 71st St. #8150
Tulsa, OK 74136

TEL: (918) 492-4300
FAX: (918) 492-4370

OREGON

Components West, Inc.
16300 SW Hart Rd.
Suite G

Beaverton, OR 97007
TEL: (503) 642-9110
FAX: (503) 642-9592

PENNSYLVANIA
Deltatronics

790 Penllyn Pike

Suite 201

Blue Bell, PA 19422
TEL: (215) 641-9930
FAX: (215) 641-9934

TENNESSEE

CSR Electronics, Inc.
Grand Union Bidg.

406 Union Ave.

Suite 550

Knoxville, TN 37902
TEL: (615) 637-0293
FAX: (615) 637-0466

TEXAS

West Associates

363 N. Sam Houston Pkwy E
Suite 615

Houston, TX 77060

TEL: (713) 999-0101
FAX: (713) 820-2001

West Associates

9171 Capital of Texas Hwy. N.

Houston Bldg. #120
Austin, TX 78759

TEL: (512) 343-1199
FAX: (512) 343-1922

West Associates

801 E. Campbell Rd. #350
Richardson, TX 75081
TEL: (214) 680-2800
FAX: (214) 699-0330

UTAH

Waugaman Associates
876 East Vine St.
Murray, UT 84107

TEL: (801) 261-0802
FAX: (801) 261-0830

VIRGINIA

Deltatronics

3562 13th St. N\W
Washington, DC 20010
TEL: (202) 745-3844
FAX: (202) 483-0672

WASHINGTON
Components West, Inc.
4020 148th Ave. NE
Suite C

Redmond, WA 98052
TEL: (206) 885-5880
FAX: (206) 882-0642

Wi NSIN

Sumer, Inc.

13555 Bishops Court
Brookfield, WI 53005
TEL: (414) 784-6641
FAX: (414) 784-1436

PUERTO RICO

Sales Engineering Concepts

Condo. Buena Vista C-1
Urb. Mercedita

Ponce, P.R. 00731
TEL: (809) 841-4220
FAX: (809) 259-7223

CANADA

ALBERTA

Dynasty Components
Calgary, Alberta

TEL: (403) 560-1212
FAX: (403) 686-2364

BRITISH COLUMBIA

Dynasty Components

Vancouver, British Columbia

TEL: (604) 298-8288
FAX: (604) 298-8318

ONTARIO

Dynasty Components
1140 Morrison Dr.

Unit 110

Ottawa, Ontario
Canada, K2H 859

TEL: (613) 596-9800
FAX: (613) 596-9886

Dynasty Components
Toronto, Ontario

TEL: (905) 672-5977
FAX: (416) 489-3527

QUEBEC

Dynasty Components
Montreal, Quebec

TEL: (514) 843-1879
FAX: (514) 694-6826

5-2

In-System Programmability Manual

AUSTRALIA

ZATEK Australia, Ltd.
1059 Victoria Road
P.O Box 397, Suite 8
West Ryde, NSW 2114
Sydney, 3153

TEL: (61) 2 874-0122
FAX: (61) 2 874-6171

AUSTRIA

Avnet / E2000
Waidhausenstr. 19
A-1140 Wien

TEL: (43) 1-9112847
FAX: (43) 1-9113853

Steiner Electronic GmbH.
Egererstrasse 18

A-3013 Tullnerbach

TEL: (43) 2233 55 366-0
FAX: (43) 2233 55 360

Alcom Electronics nv/sa
Singel 3

2550 Kontich

TEL: (32) 3 458-3033
FAX: (32) 3458 3126

CHINA

MIE Ltd.

Wanguan Land House
5 East Zhixin Rd.
Haidian, Beijing 100083
TEL: (861) 201-7299
FAX: (861)201-7299

CZECH REPUBLIC

HT-EUREP Electronic spoi.s.r.o.
c/o Comp. Ap Spoi.s.r.o.
Rosenberggovych 10

180 00, Praha 8

TEL: (42) 2-6833858

FAX: (42) 2-6833858

DENMARK

Ditz Schweitzer
Vallensbaekvej 41
Postboks 5,

DK-2605 Brendby

TEL: (45) 42453044
FAX: (45) 42 4592 06

FINLAND

Integrated Electronics OY
Turkhaudantie #1

00700 Helsinki

TEL: (358) 03513134
FAX: (358) 03513133

FRANCE
Company 3D
3-8 Rue Ambroize Croizat

INTERNATIONAL SALES REPRESENTATIVES AND DISTRIBUTORS

GERMANY

Avnet / E2000 GmbH
Stahigruberring 12

81829 Miinchen

TEL: (49) 8945110 -01
FAX: (49)8945110-129

Eurodis Enatechnik GmbH
Schillerstrasse 14

25451 Quickborn

TEL: (49) 4106 612-0
FAX: (49) 4106 612-268

HONG KONG

RTI Industries Co. Ltd.

Rm. 402, Nan Fung Commercial
Centre

No. 19, Lam Lok Street
Kowloon Bay, Kowloon

TEL: (852) 795 7421

FAX: (852) 795 7839

HUNGARY

HT-EUREP Electronic Kft.
X-Byte Kit.

Boszornenyi ut 3/a
H-1126 Budapest

TEL: (36) 1-155-47-48
FAX: (36) 1-155-47-48

IRELAND

Silicon Concepts
Norebank House
Greens Hill, Kilkenny
TEL: (353) 56 64002
FAX: (353) 56 51438

ISRAEL

Telsys Ltd.

Dvora Hanevia Str.

Neve Sharet, Atidim Bldg. 3
Tel-Aviv 61 431 Israel

TEL: 03-492001-11

FAX: 03-497407

ITALY
Comprel S.P.A.

Via Po, 37

20031 — Cesano Maderno
Milano
TEL:
FAX:

(39) 3-62553991
(39) 3-62553967

Avnet EMG Division De Mico
Viale Vittorio Veneto, 8
20060 Cassina De Pecchi
Milano
TEL:
FAX:

JAPAN
Ado Electronic Indust. Co., Ltd.
18-10, Sotokanda 2-Chome

(39) 02-95343600
(39) 02-95344371

Sales Offices

Hakuto Co., Ltd.

1-13, Shinjuku 1-Chome
Shinjuku-ku, Tokyo 160
TEL: (81) 3-3355-7617
FAX: (81) 3-3355-7680

Hoei Denki Co., Ltd.

6-60, Niitaka 2-Chome
Yodogawa-Ku, Osaka 532
TEL: (81) 6-394-4596
FAX: (81) 6-396-5647

KOREA

Ellen & Company

5FL, IL Heung Sporex Bldg.
1490-25, Seocho-Dong
Seocho-ku, Seoul 137-070
TEL: (82) 2-523-2220
FAX: (82)2-523-2345

Woo Young Tech Co., Ltd.
5th FI. Koami Bldg.

13-31 Yoido-dong
Youngdeungpo-Ku, Seoul
TEL: (82) 2-369-7099
FAX: (82)2-369-7091

NETHERLANDS

Alcom Electronics B.V.
P.O. Box 358

2900 AJ Capelle A/D ljssel
TEL: (31) 104519533
FAX: (31) 10 4586482

NORWAY
Jakob Hatterland Electronic A/S
N-5578 Nedre Vats

TEL: (47) 53 76 30 00
FAX: (47)537653 39
POLAND

HT-EUREP Electronic sp.z.o0.0.
WG Electronics

ul. Nowogrodzka 42/3

00-695 Warszawa

TEL: (48) 2-621 77 04

FAX: (48) 2-628 48 50

SINGAPORE

Technology Distribution

No. 1 Syed Alwi Rd. #05-02
Song Lin Bldg., Singapore 0620
TEL: (65) 299-7811

FAX: (65)294-1518

SOUTH AFRICA

Pace Electronic Components
Cnr. Vanacht & Gewel St.
Isando 1600, P.O Box 701
TEL: (27) 11 974 1525
FAX: (27) 11 392 2463

SPAIN

N
Pelcon Electronics
Box 6023
Girovagen 13
175 06 Jarfalla
TEL: (46) 8 795 9870
FAX: (46) 8 760 7685

SWITZERLAND
Avnet / E2000
Bohnirainstr. 11
CH-8801 Thalwil

TEL: (41)1-7221330
FAX: (41)1-7221340

Eurodis Electronic AG
Bahnstrasse 58/60
CH-8105 Regensdorf
TEL: (41) 0184331 11
FAX: (41)018433475

Eurodis Electronic AG
Tafernstrasse 37
CH-5405 Baden-Dattwil

TEL: (41) 5684-0171
FAX: (41)5683-3454
TAIWAN

Master Electronics
16F, No.182, Sec. 2
Tun-Hwa South Rd.

Taipei
TEL: (886) 02-732-3002
FAX: (886) 02-735-0902

Score Zap Industry

1F, No. 26, Lane 60
Wen Hu Street

Nei Hu, Taipei 114

TEL: (886) 2-627-7045
FAX: (886) 2-659-0089

UNITED KINGDOM
Micro Call

17 Thame Park Rd.
Thame, Oxon 0X9 3XD
TEL: (44) 84 426-1939
FAX: (44) 84 426-1678

Silicon Concepts, Ltd.
PEC Lynchborough Rd.
Passfield, Liphook

Hampshire GU30 7SB
TEL: (44) 428 751617
FAX: (44) 428 751603

Silicon Concepts, Ltd.
Meridale, Welsh Street
Chepstow, Gwent, NP6 5LR
TEL: (44) 291-624101
FAX: (44) 291-629878

Future Electronics

91127 Palaiseau Cedex Chiyoda-ku Matrix Electronica Future House
TEL: (33) 164472929 Tokyo 101 C/Belmonte de Tajo, 76-30 B Poyle Road
FAX: (33) 1 64470084 TEL: (81) 3-3257-2614 28019 Madrid Colnbrook, Berkshire SL3 0EZ
FAX: (81) 3-3257-1579 TEL: (34) 15602737 TEL: (44) 753-687000
Compress FAX: (34) 1 565 2865 FAX: (44)753-689100
30, Rue du Morvan Macnica, Inc.
Silic 539 Hakusan High-Tech Park
94633 Rungis Cedex 1-22-2 Hakusan, Midori-ku
TEL: (33) 146878020 Yokohama, 226
FAX: (33) 146866763 TEL: (81) 45-939-6140
FAX: (81) 45-939-6141
5-3 In-System Programmability Manual

Sales Offices

NORTH AMERICAN DISTRIBUTORS

ALABAMA

Arrow Electronics
1015 Henderson Rd.
Huntsville, AL 35816
(205) 837-6955

Hamilton Hallmark
4890 University Square
Suite 1

Huntsville, AL 35816
(205) 837-8700

Insight Electronics
4835 University Square
Suite 19

Huntsville, AL 35818
(205) 830-1222

Marshall Industries
3313 Memorial Pkwy S.
Huntsville, AL 35801
(205) 881-9235

ARIZONA

Arrow Electronics
2415 W. Erie Drive
Tempe, AZ 85282
(602) 431-0030

Hamilton Hallmark
4637 S. 36th Place
Phoenix, AZ 85040
(602) 437-1200

Insight Electronics
1515 W. University Dr.
Suite #103

Tempe, AZ 85281
(602) 829-1800

Marshall Industries
9831S. 51st St. #C108
Phoenix, AZ 85044
(602) 496-0290

NORTHERN CALIFORNIA
Arrow Electronics

1180 Murphy Ave.

San Jose, CA 95131

(408) 441-9700

Arrow Electronics
48834 Kata Dr. #103
Fremont, CA 94538
(510) 490-9480

Hamilton Hallmark
580 Menlo Drive
Suite 2

Rocklin, CA 95765
(916) 624-9781

Hamilton Hallmark
2105 Lundy Ave.
San Jose, CA 95131
(408) 435-3500

Insight Electronics
1295 Oakmead Pkwy.
Sunnyvale, CA 94086
(408)720-9222

Marshall Industries
336 Los Coches St.
Milpitas, CA 95035
(408) 942-4600

Marshall Industries

3039 Kilgore Ave. #140
Rancho Cordova, CA 95670
(916) 635-9700

Zeus Electronics

6276 San Ignacio Ave. Ste. E
San Jose, CA 95119

(408) 629-4789

SOUTHERN CALIFORNIA
Arrow Electronics

Malibu Canyon Bus. Park
26677 W. Agoura Road
Calabasas, CA 91302
(818) 880-9686

Arrow Electronics

6 Cromwell, Suite 100
Irvine, CA 92718
(714) 587-0404

Arrow Electronics
9511 Ridgehaven Ct.
San Diego, CA 92123
(619) 565-4800

Hamilton Hallmark
4545 Viewridge Ave.
San Diego, CA 92123
(619) 571-7540

Hamilton Halimark
3170 Pullman St.
Costa Mesa, CA 92626
(714) 641-4100

Hamilton Hallmark
10950 Washington Blvd.
Culver City, CA 90232
(310) 558-2800

Hamilton Hallmark

21150 Califa St.
Woodland Hills, CA 91367
(818) 594-0404

Insight Electronics

4333 Park Terrace Dr.
Suite 101

Westlake Village, CA 91361
(818) 707- 2101

Insight Electronics
9980 Huennekens St.
San Diego, CA 92121
(619) 587-1100

Insight Electronics
2 Venture Plaza
Suite 340

Irvine, CA 92718
(714) 727-3291

Marshall Industries
26637 Agoura Rd.
Calabasas, CA 91302
(818) 878-7000

Marshall Industries

9320 Telstar Ave.

El Monte, CA 91731-3004
(818) 307-6000

Marshall Industries
One Morgan
Irvine, CA 92718
(714) 458-5301

Marshall Industries
5961 Kearny Villa Rd.
San Diego, CA 92123
(619) 627-4140

Zeus Electronics

22700 Savi Ranch Pkwy.
Yorba Linda, CA 92687
(714) 921-9000

COLORADO

Arrow Electronics

61 Inverness Drive East
Suite 105

Englewood, CO 80112
(303) 799-0258

Hamilton Hallmark
12503 E. Euclid Drive
Suite 20

Englewood, CO 80111
(303) 790-1662

Insight Electronics

384 Inverness Drive South
Suite 105

Englewood, CO 80112
(303) 649-1800

Marshall Industries
12351 N. Grant
Thornton, CO 80241
(303) 451-8383

CONNECTICUT
Arrow Electronics

12 Beaumont Rd.
Wallingford, CT 06492
(203) 265-7741

Hamilton Hallmark
125 Commerce Ct.
Unit 6

Chesire, CT 06410
(203) 271-2844

Marshall Industries

20 Sterling Dr.

PO Box 200
Wallingford, CT 06492
(203) 265-3822

FLORIDA

Arrow Electronics

400 Fairway Dr.

Deerfield Beach, FL 33441
(305) 429-8200

Arrow Electronics

37 Skyline Dr.

Bldg. D, Suite 3101
Lake Mary, FL 32746
(407) 333-9300

Hamilton Hallmark
10491 72nd St. North
Largo, FL 34637
(813) 541-7440

Hamilton Hallmark

3350 NW 53rd St.

Suite 105-107

Ft. Lauderdale, FL 33309
(305) 484-5482

Hamilton Hallmark
7079 University Blvd.
Winter Park, FL 32792
(407) 657-3300

Insight Electronics

600 S. Northlake Blvd.

Suite 250

Altamonte Springs, FL 32071
(407) 834-6310

Insight Electronics

1 Park Place

621 NW 53rd St., Suite 240
Boca Raton, FL 33487
(407) 995-1486

Insight Electronics

13573 58th St. N., Suite 149
Clearwater, FL 34620

(813) 538-4191

Marshall Industries

380 S. Northlake Rd. #1024
Altamonte Springs, FL 32701
(407) 767-8585

Marshall Industries

2700 Cypress Ck. Rd. #D114
Ft. Lauderdale, FL 33309
(305) 977-4880

Marshall Industries

2840 Scherer Dr. #410
St. Petersburg, FL 33716
(813) 573-1399

Zeus Electronics

37 Skyline Dr. Bldg. D
Suite 1301

Lake Mary, FL 32746
(407) 333-3055

GEORGIA

Arrow Electronics

4205E River Green Pkwy.
Duluth, GA 30136

(404) 497-1300

Hamilton Hallmark

3425 Corporate Way
Suite A

Duluth, GA 30136-2552
(404) 623-4400

Insight Electronics
2400 Pleasant Hill Rd.
Suite 200

Duluth, GA 30136
(404) 717-8566

5-4 In-System Programmability Manual

Sales Offices

Marshall Industries

5300 Oakbrook Pkwy #140
Norcross, GA 30093

(404) 923-5750

IQWA

Arrow Electronics

375 Collins Rd. NE .
Cedar Rapids, IA 52402
(319) 395-7230

Hamilton Hallmark

2335-A Blairs Ferry Rd. NE
Cedar Rapids, IA 52402
(319) 393-0033

ILLINOI

Arrow Electronics

1140 W. Thorndale Ave.
ltasca, IL 60143

(708) 250-0500

Hamilton Hallmark
1130 Thorndale Ave.
Bensonville, IL 60106
(708) 860-7780

Insight Electronics

1365 Wiley Rd., Suite 142
Schaumberg, IL 60173
(708) 885-9700

Marshall Industries

50 E. Commerce Dr. # 1
Schaumberg, IL 60173
(708) 490-0155

Zeus Electronics

1140 West Thorndale Ave.
ltasca, IL 60143

(708) 595-9730

NDIANA

Arrow Electronics

7108 Lakeview Pkwy. W. Dr.
Indianapolis, IN 46268

(317) 299-2071

Hamilton Hallmark

655 W. Carmel Dr. #160
Carmel, IN 46032
(317) 575-3500

KANSAS

Arrow Electronics
9801 Legler Road
Lenexa, KS 66214
(913) 541-9542

Hamilton Hallmark
10809 Lakeview Drive
Lenexa, KS 66215
(913) 888-4747

Marshall Industries

10413 W. 84th Ter.

Pine Ridge Business Park
Lenexa, KS 66214

(913) 492-3121

MARYLAND

Arrow Electronics

9800J Patuxent Wood Dr.
Columbia, MD 21046
(301) 596-7800

Hamilton Hallmark
10240 Old Columbia Rd.
Columbia, MD 21046
(410) 988-9800

Marshall Industries
9130B Guilford
Columbia, MD 21046
(301) 470-2800

MASSACHUSETTS
Arrow Electronics

25 Upton Dr.
Wilmington, MA 01887
(508) 658-0900

Hamilton Hallmark
10 P Centennial Dr.
Peabody, MA 01960
(508) 532-9808

Insight Electronics

55 Cambridge St.
Suite 301

Burlington, MA 01803
(617) 270-9400

Marshall Industries

33 Upton Dr.
Wilmington, MA 01887
(508) 658-0810

Zeus Electronics

25 Upton Dr.
Wilmington, MA 01887
(508) 658-4776

MICHIGAN

Arrow Electronics
44720 Helm St.
Plymouth, MI 48170
(313) 455-0850

Hamilton Hallmark

44191 Plymouth Oaks Blvd.

#1300
Plymouth, Ml 48171
(313) 416-5800

Marshall Industries
31067 Schoolcraft

Livonia, M1 48150

(313) 525-5850

MINNESOTA

Arrow Electronics

10100 Viking Drive # 100
Eden Prairie, MN 55344
(612) 941-5280

Hamilton Hallmark

9401 James Ave. South
Suite 140

Bloomington, MN 55431
(612) 881-2600

Insight Electronics

5353 Gamble Rd.

Suite 330

St. Louis Park, MN 55416
(612) 525-9999

Marshall Industries
14800 28th Ave. N.
Suite 175

Plymouth, MN 55447
(612) 559-22i1

MISSOURI

Arrow Electronics
2380 Schuetz Rd.
St. Louis, MO 63146
(314) 567-6888

Hamilton Hallmark
3783 Rider Trail South
Earth City, MO 63045
(314) 291-5350

Marshall Industries
3377 Hollenberg Dr.
Bridgeton, MO 63044
(314) 291-4650

NEW JERSEY

Arrow Electronics

4 East Stow Rd. Unit 11
Marlton,NJ 08053
(609) 596-8000

Arrow Electronics

43 Route 46 East
Pinebrook, NJ 07058
(201) 227-7880

Hamilton Hallmark

1 Keystone Ave. Bldg. 36
Cherry Hill, NJ 08003
(609) 424-0110

Hamilton Hallmark

10 Lanidex Plaza West
Parsippany, NJ 07054
(201) 515-1641

Marshall Industries
101 Fairfield Rd.
Fairfield, NJ 07006
(201) 882-0320

Marshall Industries
158 Gaither Dr.

Mt. Laurel, NJ 08054
(609) 234-9100

NEW YORK
Arrow Electronics
25 Hub Drive
Melville, NY 11747
(516) 391-1300

Arrow Electronics

20 Oser Ave.
Hauppauge, NY 11788
(516) 231- 1000

Arrow Electronics

3375 Brighton-Henrietta
Townline Rd.
Rochester, NY 14623
(716) 427-0300

Hamilton Hallmark
1057 E. Henrietta Rd.
Rochester, NY 14623
(716)475-9130

Hamilton Hallmark
390 Rabro Dr.
Hauppauge, NY 11788
(516) 434-7400

Hamilton Hallmark

3075 Veterans Memorial
Ronkonkoma, NY 11779
(516) 737-0600

Marshall Industries

97 Oser Ave.
Hauppauge, NY 11788
(516) 273-2695

Marshall Industries
1250 Scottsville Rd.
Rochester, NY 14624
(716) 235-7620

Marshall Industries
100 Marshall Drive
Endicott, NY 13790
(607) 785-2345

Zeus Electronics

100 Midland Ave.

Port Chester, NY 10573
(914) 937-7400

NORTH CAROLINA
Arrow Electronics
5240 Greens Dairy Rd.
Raleigh, NC 27604
(919) 876-3132

Hamilton Hallmark

5234 Green's Dairy Road
Raleigh. NC 27604

(919) 872-0712

Marshall Industries
5224 Greens Dairy Rd.
Raleigh, NC 27604
(919) 878-9882

OHIO

Arrow Electronics
6573E Cochran Rd.
Solon, OH 44139
(216) 248-3990

Arrow Electronics

8200 Washington Village Dr. #A

Centerville, OH 45458
(513) 435-5563

Hamilton Hallmark

777 Dearborne Park Lane
Suite L

Worthington, OH 43085
(614) 888-3313

Hamilton Hallmark
5821 Harper Road
Soion, OH 44139
(216) 498-1100

Hamilton Hallmark

7760 Washington Village Dr.
Dayton, OH 45459

(513) 439-6735

5-5

In-System Programmability Manual

Sales Offices

Marshall Industries
3520 Park Center Dr.
Dayton, OH 45414
(513) 898-4480

Marshall Industries

30700 Bainbridge Rd. Unit A
Solon, OH 44139

{216) 248-1788
OKLAHOMA

Arrow Electronics

12111 East 51st St. #101
Tulsa, OK 74146

(918) 252-7537

Hamilton Hallmark

5411 S. 125th E Ave.,Ste. 305
Tulsa, OK 74146

(918) 254-6110

OREGON

Almac-Arrow Electronics
1885 N.W. 169th Place
Beaverton, OR 97006
(503) 629-8090

Hamilton Hallmark
9750 SW Nimbus Ave.
Beaverton, OR 97005
(503) 526-6200

Insight Electronics

8705 SW Nimbus Ave. Ste. 200
Beaverton, OR 97005

(503) 644-3300

Marshall Industries
9705 SW Gemini Dr.
Beaverton, OR 97005
(503) 644-5050

TEXAS

Arrow Electronics
11500 Metric Blvd.
Suite 160

Austin, TX 78758
(512) 835-4180

Arrow Electronics
3220 Commander Dr.
Carrollton, TX 75006
(214) 380-6464

Arrow Electronics
19416 Park Row #190
Houston, TX 77084
(713) 530-4700

Hamilton Hallmark
11420 Pagemill Road
Dallas, TX 75243
(214) 553-4300

Hamilton Hallmark
12211 Technology Blvd.
Austin, TX 78727
(512) 258-8848

Hamilton Hallmark
8000 Westglen
Houston, TX 77063
(713) 781-6100

Insight Electronics
11500 Metric Blvd. #215
Austin, TX 78758

/E40\ 740.3000
Oic) /19-0U3U

Insight Electronics
1778 Plano Rd. #320
Richardson, TX 75081
(214) 783-0800

Insight Electronics
15437 McKaskle
Sugarland, TX 77478
(713) 448-0800

Marshall Industries
8504 Cross Park Dr.
Austin, TX 78754
(512) 837-1991

Marshall Industries
10681 Haddington

Suite 160

Houston, TX 77043
(713) 467-1666

Marshall Industries
1551 N. Glenville Dr.
Richardson, TX 75081
(214) 705-0600

Zeus Electronics
3220 Commander Dr.
Carrollton, TX 75006
(214) 380-4330

UTAH

Arrow Electronics

1946 West Parkway Bivd.
Salt Lake City, UT 84119
(801) 973-6913

Hamilton Hallmark

1100 E. 6600 South
Suite 120

Salt Lake City, UT 84121
(801) 266-2022

Insight Electronics

545 E. 4500 South

Suite E 110

Salt Lake City, UT 84117
(801) 288-9001

Marshall Industries

2355 South 1070 West
Suite D

Salt Lake City, UT 84119
(801) 973-2288

WASHINGTON
Almac-Arrow Electronics
14360 S.E. Eastgate Way
Bellevue, WA 98007
(509) 643-9992

Hamilton Hallmark
8630 154th Ave.
Redmond, WA 98052
(206) 881-6697

Insight Electronics
12002 115th Avenue, NE
Kirkland, WA 98034
(206) 820-8100

Marshall Industries
11715 N. Creek Pkwy. S.
Suite 112

Bothell, WA 98011

(509) 486-5747

wi NSIN

Arrow Electronics

200 North Patrick Blvd.
Brookfield, WI 53045
(414) 792-0150

Hamilton Hallmark
2440 South 179th St.
New Berlin, WI 53146
(414) 797-7844

Marshall Industries
20900 Swenson Dr. #150
Waukesha, WI 53186
(414) 797-8400

CANADA

ALBERTA

Future Electronics
3833-29th St. NE
Calgary, Alberta T1Y 6B5
(403) 250-5550

Future Electronics
4606-97th Street
Edmonton, Alberta T6E 5N9
(403) 438-2858

BRITISH COLUMBIA
Arrow Electronics

8544 Baxter Place
Burnaby, British Columbia
V5A 4T8

(604) 421-2333

Future Electronics

1695 Boundary Road
Vancouver, British Columbia
V5K 4X7

(604) 294-1166

Hamilton Hallmark

8610 Commerce Ct.
Burnaby, British Columbia
V5A 4N6

(604) 420-4101

MANITOBA

Future Electronics

106 King Edward

Winnipeg, Manitoba R3H ON8
(204) 786-7711

ONTARIO

Arrow Electronics

36 Antares Dr. Unit 100
Nepean, Ontario K2E 7W5
(613) 226-6903

Arrow Electronics

1093 Meyerside Dr.
Mississauga, Ontario L5P 1M4
(416) 670-7769

Future Electronics

1050 Baxter Road
Ofttawa, Ontario K2C 3P2
(613) 820-8313

Future Electronics

5935 Airport Rd., #200
Mississauga, Ontario L4V 1W5
(905) 612-9200

Hamilton Hallmark

151 Superior Blvd.

Unit 1-6

Mississauga, Ontario L5T 2L1
(905) 564-6060

Hamilton Hallmark

190 Colonnade Rd.
Nepean, Ontario K2E 7J5
(613) 226-1700

Marshall Industries

6285 Northern Dr. #112
Mississauga, Ontario L4V 1X5
(905) 612-1771

QUEBEC

Arrow Electronics

1100 St. Regis Bivd.
Dorval, Quebec HIP 2T5
(514) 421-7411

Future Electronics

237 Hymus Bivd.

Pointe Claire, Quebec HIR 5C7
(514) 694-7710

Future Electronics

1000 St-Jean Babtiste #100
Quebec City, Quebec G2E 5G5
(418) 877-6666

Hamilton Hallmark

600 Transcanada Hwy
Suite 600

Ville St. Laurent, Quebec
H4T 1V6

(514) 335-1000

Marshall Industries

148 Brunswick Blvd.

Pointe Claire, Quebec HIR 5B9
(514) 694-8142

5-6 In-System Programmability Manual

Section 1: ISP Overview

Section 2: The Basics of ISP

Section 3: ISP Programming Options

Section 4: Application Notes and Article Reprints

Section 5: General Information

Index

A

ABEL,
compiler support,
design flow, 2-43
pDS+ Fitter, 1-7, 2-40

ATE (Automatic Test Equipment),
approaches, 2-55, 3-45
programming with, 1-6, 3-25

Boundary Scan, 1-3, 2-19
Test Access Port, 2-19
Bulletin Board Systems (BBS), Lattice,

Cc

C++ (ispCODE),
Cadence, pDS+ Fitter,
design flow, 2-41
Compiler Support,
ispGAL, 2-37
ispGDS, GASM, 2-38
Configuration File, 2-52, 3-4, 3-6, 3-9

1-7, 2-37

4-31

2-46, 3-28
1-7, 2-40

1-7, 2-37, 2-40

CUPL, compiler support, 1-7, 2-37

D

Daisy Chain Programming, 2-5, 2-55, 3-45
details, 2-34

hardware considerations, 2-7
ISP Daisy Chain Download, 2-55, 3-3, 3-5
programming, verifying and reading the, 2-52
Dedicated ISP Pins, programming configuration,
Design Entry Tools, Lattice supported, 1-7, 2-40
Design Flow, ISP, 2-1, 2-37, 2-46
Development Tools, in-system programming,
2-40
design entry tools, Lattice supported 1-7, 2-40
ispStarter Kits, 1-7, 2-10
pDS Software, Lattice, 1-7, 2-37
pDS+ Fitters, Lattice, 1-7, 2-40
Download Software,. See ISP Daisy Chain Download
Software,

2-6

1-7,

E

E’CMOS, 1-4, 2-3

Embedded Processor, programming from an,

2-45, 3-11
microcontroller,
microprocessor,

F

Field Upgrades/Repair,
Fitter Software, Lattice supported,
Fuse Map Generation 2-37

H
Hardware Considerations,

3-12
3-11

2-7

In-System Programmability, definition of,

In-System Programming, applications,

configurable memory controller,
in high-volume manufacturing,
selecting the best device, 4-1

4-
4-7

ISP Daisy Chain Download Software,

for PC-DOS, 3-5

for PC-Windows, 3-3

1-6,

1-2, 1-8, 3-10
1-

7, 2-40

1-1
1-3
15

1-7, 2-7, 2-55

for the Sun,. See ISP Download for the Sun,

ISP Download for the Sun, 3-7
ISP Enable (ispEN), 1-5, 2-3
isp Engineering Kits, 1-8, 2-9
download cable, 1-8
Model 100, 2-9
Model 200, 2-9, 3-7
ISP Interface, 1-5, 2-3

3-state programming state machine,

iISPEN,
MODE,
SCLK,
SDI, 1-5, 2-3
SDO, 1-5, 2-3
ISP Programming Pins,

1-5, 2-4
1-5, 2-3
1-5, 2-3

2-4, 2-6

dedicated ISP pin programming configuration,

during programming, 2-8

2-3

2-6

SCLK, SDO, SDI, MODE, ispEN, 2-4

to preload a device, 2-17
ISP Serial Programmer,

ispCODE Source Code,

3-3, 3-12
C++, 2-47, 3-28
customizing, 2-48

porting considerations, 2-48

2-46, 2-55, 3-10
1-7, 2-7, 2-46, 2-55,

In-System Programmability Manual

Index

programming with, 3-8
ispDOWNLOAD Cable, 1-8, 2-7, 2-9, 3-8
ispGAL Devices, 1-5, 2-7

compiler support, 2-37

ID codes, 2-32

instruction set, 2-32

internal architecture, 2-33

programming details, 2-32

securing, 2-33

timing, 2-32
ispGDS Devices, 1-5, 2-7

compiler support, 2-38

ID codes, 2-23

instruction set, 2-23

internal architecture, 2-24

pins during normal and programming modes, 2-8

programming algorithms, 2-27

programming details, 2-23

shift registers, 2-23

timing, 2-23
ispLSI Devices, 1-4, 2-7

design entry and fitter software, 2-40

device layout, 2-15

fuse map to device conversion, 2-15

ID codes, 2-12

instruction set, 2-14

pins during normal and programming modes, 2-8

preload, 2-17

programming details, 2-12

securing, 2-12

shift register formats, 2-18

timing, 2-12
ispStarter Kits, 1-7, 2-10
ispSTREAM, 2-27, 2-52

J

JED2PCF, 3-28

JEDECFile, 2-1, 2-3, 2-37, 2-45, 3-11
fuse map creation and storage, 3-13
fuse map shift procedures, 3-13

L

LOG/C, pDS+ Fitter, 1-7, 2-40
design flow, 2-44

Memory Requirements, ispSTREAM 2-52

Mentor Graphics, pDS+ Fitter, 1-7, 2-40
design flow, 2-42

Microcontroller, programming with a, 3-12

Microprocessor, programming with a, 3-11

MODE select (MODE), 1-5, 2-3
Multi-Function Hardware, 1-2

(o)

On-Board Programming,
multiple devices, 3-49
supported adapters, 3-48
with third-party programmer, 3-50
ORCAD, pDS+ Fitter, 1-7, 2-40
design flow, 2-44

P

Parallel Multiplex, programming configuration, 2-6,
3-45
PC, in-system programming ona, 1-6, 3-3, 3-5
pDS Software, Lattice, 1-7, 2-40
design flow, 2-41
pDS+ Fitters, Lattice, 1-7, 2-40
PRO Series,. See Viewlogic, pDS+ Fitter,
Processor, embedded,. See Embedded Processor,
programming from an,
Programming Configurations, 1-6, 2-5
parallel, 2-6, 3-45
serial (daisy chain), 2-5
Programming Platforms, in-system programming, 1-6
Programming Times, 2-10
Programming Tools, 1-7
ISP Daisy Chain Download Software, 1-7
isp Engineering Kits, 1-8
ispCODE, 1-7
ispDOWNLOAD Cable, 1-8. See also
ispDOWNLOAD cable,
programming adapters, 3-47
selecting, 3-3
third-party, 3-47, 3-52

R
Reconfigure For Test (RFT), 1-1,4-7
S

Serial Clock (SCLK), 1-5, 2-3
Serial Data In (SDI), 1-5, 2-3
Serial Data Out (SDO), 1-5, 2-3
Serial Programming,. See Daisy Chain Programming,
Simulation, timing, 2-40
Socket Adapters, Lattice supported, 3-47
State Machine, 2-3, 2-4, 2-30, 4-15

use with ispGDS and ispGAL devices, 2-8
Synario, pDS+ Fitter, 1-7, 2-40

design flow, 2-43
Synopsys, pDS+ Fitter, 1-7, 2-40

In-System Programmability Manual

Index

design flow, 2-42
Synthesis, 2-40

T
Test Access Port (TAP), boundary scan, 2-19
Test Vectors, 3-25
test vector generation software, 3-28
Third-Party Programmers, Lattice supported, 1-6,
3-47, 3-52
supported socket adapters, 3-47

U

UES (User Electronic Signature), 1-4, 2-11, 2-24
Upgrades/Repair, in the field, 1-2, 1-3, 3-10

v

Viewlogic, pDS+ Fitter, 1-7
design flow, 2-43
PROcapture, 2-40
PROsynthesis, 2-40
ViewDraw, 2-40
ViewSynthesis, 2-40

w

Workstation, in-system programmingon a, 1-6, 3-7

I-3

In-System Programmability Manual

Notes

-4 In-System Programmability Manual

	00372277.tif
	00372278.tif
	00372279.tif
	00372280.tif
	00372281.tif
	00372282.tif
	00372283.tif
	00372284.tif
	00372287.tif
	00372288.tif
	00372289.tif
	00372290.tif
	00372291.tif
	00372291a.tif
	00372291b.tif
	00372292.tif
	00372293.tif
	00372294.tif
	00372295.tif
	00372296.tif
	00372297.tif
	00372298.tif
	00372299.tif
	00372300.tif
	00372301.tif
	00372302.tif
	00372303.tif
	00372304.tif
	00372305.tif
	00372306.tif
	00372307.tif
	00372308.tif
	00372309.tif
	00372310.tif
	00372311.tif
	00372312.tif
	00372313.tif
	00372314.tif
	00372315.tif
	00372316.tif
	00372317.tif
	00372318.tif
	00372319.tif
	00372320.tif
	00372321.tif
	00372322.tif
	00372323.tif
	00372324.tif
	00372325.tif
	00372326.tif
	00372327.tif
	00372328.tif
	00372329.tif
	00372330.tif
	00372331.tif
	00372332.tif
	00372333.tif
	00372334.tif
	00372335.tif
	00372336.tif
	00372337.tif
	00372337a.tif
	00372337b.tif
	00372337c.tif
	00372337d.tif
	00372337e.tif
	00372339.tif
	00372339a.tif
	00372339b.tif
	00372339c.tif
	00372339d.tif
	00372339e.tif
	00372343.tif
	00372344.tif
	00372345.tif
	00372346.tif
	00372347.tif
	00372348.tif
	00372349.tif
	00372350.tif
	00372351.tif
	00372352.tif
	00372353.tif
	00372354.tif
	00372355.tif
	00372356.tif
	00372357.tif
	00372358.tif
	00372359.tif
	00372360.tif
	00372361.tif
	00372362.tif
	00372363.tif
	00372364.tif
	00372365.tif
	00372366.tif
	00372367.tif
	00372368.tif
	00372369.tif
	00372370.tif
	00372371.tif
	00372372.tif
	00372373.tif
	00372374.tif
	00372375.tif
	00372376.tif
	00372377.tif
	00372378.tif
	00372379.tif
	00372380.tif
	00372381.tif
	00372382.tif
	00372383.tif
	00372384.tif
	00372385.tif
	00372386.tif
	00372387.tif
	00372388.tif
	00372389.tif
	00372390.tif
	00372391.tif
	00372392.tif
	00372393.tif
	00372394.tif
	00372395.tif
	00372396.tif
	00372397.tif
	00372398.tif
	00372399.tif
	00372400.tif
	00372401.tif
	00372402.tif
	00372403.tif
	00372403a.tif
	00372403b.tif
	00372404.tif
	00372405.tif
	00372406.tif
	00372407.tif
	00372408.tif
	00372409.tif
	00372410.tif
	00372411.tif
	00372412.tif
	00372413.tif
	00372414.tif
	00372415.tif
	00372416.tif
	00372417.tif
	00372418.tif
	00372419.tif
	00372420.tif
	00372421.tif
	00372422.tif
	00372423.tif
	00372424.tif
	00372425.tif
	00372426.tif
	00372427.tif
	00372428.tif
	00372429.tif
	00372430.tif
	00372431.tif
	00372432.tif
	00372433.tif
	00372434.tif
	00372435.tif
	00372436.tif
	00372437.tif
	00372438.tif
	00372439.tif
	00372440.tif
	00372441.tif
	00372442.tif
	00372443.tif
	00372444.tif
	00372445.tif
	00372446.tif
	00372447.tif
	00372448.tif
	00372449.tif
	00372450.tif

